1. lng动力船燃料舱
基本原理:是在主锅炉中采用LNG作为燃料,利用主锅炉产生的蒸汽驱动蒸汽透平(turbine,涡轮),进而推动螺旋桨和发电机组。
蒸汽轮机的整体热效率较低,仅为20%-30%,不到低速柴油机的一半。但对LNG运输船而言,由于货物运输过程中会产生大量的BOG(boiled off gas,蒸发气)可以作为推进燃料,所以无需过多考虑发动机的热效率问题。蒸汽轮机技术成熟可靠性高,日常维护的频率和成本都很低,来自货舱的BOG可以直接当作主锅炉的燃料,避免了采用内燃机需要的增压、加热等设备。
2. 船用LNG燃料供气系统
当发动机起动,阀门打开,LNG气瓶内的液化天然气依靠气瓶自身的压力,通过控制阀和燃料限流阀进入气化器中。气化器通过发动机回水来对LNG进行加热,在气化器中液化天然气被气化成气态天然气。
天然气发动机正常运转所需要的天然气压力范围为0.6~0.8MPa,该压力通过气化器后供气管路上的电控调压器来控制,确保气体燃料的压力不超出发动机规定的压力范围,安装时应保证电控调压器天然气出口与混合器进气口距离控制在500mm以内。
天然气与过滤后的空气在混合器中混合,从而为汽车发动机提供燃料。为了增加供气管路上的气体容量,在发动机负荷发生变化时,保持供气压力的相对稳定,在LNG汽车的供气管路上,还装设有缓冲器。当天然气燃烧后,燃烧产物经过催化转化器排到大气中,由于有污染的气体在催化转化器中参与化学反应,使得最终排到大气中的汽车尾气污染物大幅减少。
3. LNG动力船用燃料罐
LNG在船上的安全使用,除了依靠船舶自身的合理布置和系统的特殊设计,还需要制定科学合理的人员操作程序,并对LNG燃料船的船员开展操作和培训。以LNG燃料动力船的LNG加注这一环节为例,除了将加注站布置在露天甲板通风良好处,加注接口下方设置水帘、集液盘,选用合适的软管连接,采用干式断开型加注接头,配备合理通讯设施等船舶措施外。还应特别注意对LNG加注操作人员的培训,
这些特殊培训包括正常的加注前检查、加注方与受注方通信、人员进入、应急响应等方面。需要指出的是,由于存在多种加注形式(如:槽车对LNG动力船加注、LNG加注船对LNG动力船加注),且LNG燃料加注环节中,人员操纵的重要性比燃油船舶更突出。因此,一方面需要通过制定合理的LNG燃料加注操作手册保证LNG燃料的安全使用。另一方面,
由于现阶段的LNG的燃料作业必须通过人来实施,所以需要对操作人员开展针对性培训。为从整个环节提高船舶使用LNG的安全性,CCS通过对LNG在船上使用的全流程研究,制定了相关规范、指南等,并可为相关方提供具体风险分析、编制加注作业流程等服务,最大程度、最大范围为船舶安全使用LNG提供技术服务。在LNG燃料加注方面,CCS通过总结提炼,形成了《液化天然气燃料加注作业指南》(2017),为LNG燃料加注负责人、操作者和相关人员提供指导性建议。
除了制定合理的操作程序,人员培训对保证LNG燃料的安全使用更加重要。从STCW公约(海员培训、发证和值班标准国际公约)及有关行业标准指南来看,与燃油船舶相比,LNG燃料动力船的船员培训较复杂。体现在LNG动力船的船员培训内容多、难度大、要求高。特别是高级船员的培训,LNG燃料动力船的船员培训要求高级船员具备燃料实际操作或液化气运输船货物作业的经历。
4. lng船发动机
一8.9升发动机,东风康明斯型号为L9NS6B400的400马力发动机,满足国六排放标准。发动机排量为8.9升,最大输出扭矩为1800牛米,最大扭矩转速区间为1100-1400rpm。据厂家资料显示,该发动机质量可靠,并且比国五机型更轻更省油。
5. lng船内部
原因是传感器出现故障。气压表原理是管体内部有一个校准杆,用于读取压力读数,使用方法校准杆位于活塞上部,但并不与活塞相连,而是与堵头相连。 活塞向右移动时,便会推动校准杆。 在释放压力时,活塞将向左移回,而校准杆则停留在其最大位移处,这时便可以读取压力读数了。
6. lng船液货舱
45米长的采沙船大概有50吨以上的铁
这艘船于2016年10月12日开工,船长362米,型宽65米,型深30.4米,设计吃水23米。航速14.5节,续航力25500海里,拥有7个货舱和1个LNG舱,各项技术性能世界领先。特别是在分舱、结构、推进、监测、装载等方面进行了全面升级,重点突出“绿色、环保、节能和安全”。
7. lng双燃料船
lng双燃料应用原理:
1.
该系统分为天然气气路、汽油油路和调节回路三大部分。充气站压缩天然气,通过充气阀向气瓶充气至20MPa。
2.
用天然气作燃料时,手动截止阀打开,行走室内设置的油气燃料转换电开关位于"燃气"位置。此时天然气电磁阀打开,汽油电磁阀关闭,气瓶内20MPa高压天然气通过高压管道进入减压调节器减压,通过低压管道、动力阀进入混合器,与通过空气滤清器进入的空气混合,通过化油器通道进入发动机通道。
3.
减压调节器与混合器一致,根据发动机各种不同条件带来不同真空度,自动调节减压调节器供气量,使天然气与空气均匀混合,满足发动机不同条件的使用要求。动力阀是调节天然气管道截面积的装置,可以调节混合气空燃比,使空燃比达到最佳状态。
4.
油路安装汽油电磁阀,其余部件不变。用汽油作燃料时,司机将油气燃料切换开关转至“油”位置,此时天然气电磁阀关闭。
8. LNG动力船
日本曾有过在全世界船舶市场中的占比将近50%周期,日本的造船企业可以建造从散货船到集装箱船,从海洋工程船到豪华邮轮等所有民用船舶门类。比如日本著名的三菱重工船厂就几乎涵盖了民用船舶的所有门类。除三菱重工是日本造船业的典型代表之外,日本还拥有川崎造船,IHI,万国,三井,常石,今治等著名的中大型造船厂。值得一提的是,从1956年起,日本造船量超过英国成为世界第一,并且保持这个冠军地位达半个世纪。日本造船业的峰值出现在1973年,年交付总量达到3千万吨。日本造船业的峰值出现在1973年,年交付总量曾经达到3千万吨。
但随着中韩两国企业的快速崛起,日本造船业在2000年后逐渐落后。日本是典型的岛国,历来十分注重造船业。且日本曾在二战期间是一个航母大国,航母建造能力当时并不比英美等国弱,也就是说,日本建造大中型航母完全具备雄厚的工业基础。早在1955年日本就超越英国成为全球第一大造船国,迄今为止一直保持着全球最高的造船业技术水平及实力。21世纪初期,由于韩国快速追赶上来,叠加长兴岛造船基地建成跃升为世界第一大造船基地后,日本的造船业排名才逐步下滑至全球第三位。
值得一提的是,现如今日本开始决定自供千亿大订单,试图重回全球造船业巅峰之位。比如日本邮船拿出了1000亿日元,向日本境内的两家造船企业,购买12艘7000车位的LNG动力船,这也是目前世界上规模最的一笔订单,引来了各国的广泛关注。
日本的动力运输船具有什么优势呢?为什么日本邮船要订购十多艘呢?实际上,运输船与传统船舶相比,在行驶的过程中可以减少25%的二氧化碳,非常有利于保护全球环境。
据日经中文网之前报道,日本第一大造船巨头今治造船曾经宣布,将与欧美海事机构合作,制定在造船业中安全使用氨气的规则标准。同时今治造船还将研发氨燃料船,力争掌握领先全球的优势技术,以重回全球造船霸主地位。早在1984年,日本已牢牢把控了全球53%的造船订单,但近些年来,却被发展势头迅猛的中韩两国造船企业反超,使得新船订单已经不足7%。因此,日本希望与欧美相关机构展开合作,率先制定氨燃料船舶的新规则,目的是在新一代燃料船领域掌握商业化的主导权。
国际海事组织(IMO)曾经制定目标,到2050年全球航运碳排放量要比2008年减少50%,而氨燃料船舶成为实现这一目标的重要法宝。国际能源署(IEA)预测称,到2050年,船舶燃料用量当中氨气的占比将达到46%。由此,氨燃料动力船技术已经成为各国船企竞争的焦点。今治造船认为,若该日企能够力争在2026年造出载重超过20万吨的大型散货船,就有望拿到更多造船业的订单,继而有了与中韩两国竞争全球造船霸主地位。
日本最大的两家造船企业——今治造船和日本造船联合。另外日本拥有川崎汽船株式会社,是日本三大航运公司之一,是世界著名的航运公司,成立于1919年,拥有近400艘世界最先进的各种不同类型的船舶,航线遍及全球,在国际航运界拥有十分重要影响。
值得一提的是,日本的“全日本造船合并计划”由日本国土交通省牵头,计划整合日本国内15家大型造船企业。日本的是目的依然是重回打造造船业的辉煌。
9. b型lng燃料舱
lng汽车气罐一般容量200.893公斤~223.214公斤。
扩展资料
天然天压缩到体积的1/625,就成了LNG天然气,主要由甲烷构成,平均分子量约16。
液化天然气(英语:Liquefied Natural Gas;简称LNG),将气田生产的天然气经净化处理,去除了一些有价值的成分如氦,和一些高分子碳氢化合物,以及一些对下游产业不利的成分如硫、氮、水等,并经一连串超低温液化后获得的常压下是液体的天然气。
一般液化天然气处在普通大气压下,但通过降温到约零下163摄氏度来液化。
物理特性
LNG无色、无味、无毒且无腐蚀性,主要含甲烷(CH4), 具有热值大、性能高、安全环保及不易爆炸等特点,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右,热值为52MMBtu/t(1MMBtu=2.52×10^8cal)。
10. lng动力船燃料舱余液
天然气汽车总体上比汽油和柴油车减少80%以上,其中一氧化碳(CO)可减少约90%,二氧化碳(CO2)减少15-24%,氮氧化合物(NOx)可减少30-40%, 二氧化硫(SO2)可减少约90%,碳氢化合物可减少约70%,苯铅碳等粉尘减少100%,此外发动机噪音可降低4—5分贝。
使用LNG作为燃料的运输船舶,可减少硫氧化物近100%、减少氮氧化物85%-90%和二氧化碳的排放15%-20%。