1. 船用磁罗经价格
现在国际上通用的是
1节=1海里/小时,1海里=1.852公里。1节也就是1.852公里/小时。
[节]:为轮船航行速度的单位,后来,也用於风及洋流的速度。
航海是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。 在从前是一种冒险行为,因为人类的地理知识有限,彼岸是不可知的世界。
【基本简介】
航海是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。 在从前是一种冒险行为,因为人类的地理知识有限,彼岸是不可知的世界。
人类在新石器时代晚期就已有航海活动。当时中国大陆制造的一些物品在台湾岛、大洋洲,以至厄瓜多尔等地均有发现。公元前4世纪希腊航海家皮忒阿斯就驾驶舟船从今马赛出发,由海上到达易北河口,成为西方最早的海上远航。公元前 490年,在波斯与希腊的海战中,希腊就曾以上百英尺长的战舰参战。中国汉代已远航至印度,把当时罗马帝国与中国联系起来。唐代为扩大海外贸易,开辟了海上丝绸之路,船舶远航到亚丁湾附近。在当时的科学技术条件下,航海是靠山形水势及地物为导航标志,属地文航海;而以星辰日月为引航标志的,则属天文航海技术之一种。指南针是中国历史上的一大发明,宋代将其应用到航海上,解决了海上航行的定向,也开创了仪器导航的先例。现代船上使用的磁罗经,是12世纪船用磁罗经传入欧洲后,由英国人开尔文改进了的海军型磁罗经。助航设施灯塔很早就已使用。公元前280年在埃及亚历山大港建造了高60多米的灯塔。1732年英国在泰晤士河口设置了灯塔。1767年在美洲特拉华设立了浮标。
公元15世纪是东西方航海事业大发展时期。1405~1433年,中国航海家郑和率船队七下西洋,历经30多个国家和地区,远航至非洲东岸的现索马里和肯尼亚一带,成为中国航海史上的创举。1420年葡萄牙创办了航海学校;船长迪亚士在1487年航海到非洲最南端,命名该地为好望角;1497年伽马率船队从里斯本出发绕好望角到印度。此后葡萄牙人又到达中国、日本。1492年10月意大利航海家哥伦布发现了美洲大陆。1499~1500年,意大利航海家亚美利哥2次登上美洲大陆考察,证实这片陆地是一片新发现的陆地,而不是哥伦布当年认为的印度岛屿,故命名新大陆为亚美利加洲,简称美洲。16世纪始,航海技术迅速发展。1569年地理学家墨卡托发明的投影成为现代海图绘制的基础。进入20世纪后,现代航海技术取得重大成就,60年代出现奥米加导航系统,随后又出现和应用了卫星导航系统、自动标绘雷达等。
航海要求船舶迅速而安全地行驶,在现代条件下,需采用现代导航设备,了解国际水运法规,世界各国海上交通管理制度。为保证人身、船舶、货物和海洋环境的安全,船舶上还需设置救生、防火、防污染设备和航海仪表及通信设备等。
2. 船用磁罗经结构
一、按下PWR键,绿灯亮,3分钟后出现STAND BY,按下TX/STBY键,雷达开始工作;再按TX/STBY可停止发射,设备在预备状态。
二、调整SEA、RAIN、GAIN和BRILL钮,选择RANGE量程,调节TURN钮至物标清晰出现在荧光屏上;SEA、RAIN和TURN分别有手动和自动,但是雨雪和海浪不能同时自动。
三、捕捉物标,按下ACQ MANUAL键,移动光标到物标上,按下左键,物标被捕捉。最多可捕捉50个物标。
四、读取物标数据,按下TGT DATA键,将光标移动到物标上,按下左键,物标数据被读取。
五、取消物标,按下ACQ/CANCEL键,将光标移动到物标上,按下左键,物标被取消。
六、设置方位线、距离圈,按下EBL和VRM键,荧光屏出现方位线、距离圈,旋转EBL 和VRM钮,设置方位和距离。
七、按下AZI/MODE键,进行真北、真运动、相对运动等选择。
八、按下PL键改变发射脉冲宽度。
九、按下TRUE/REL、VECT/TIME键进行真矢量和相对矢量选择。
十、按下TM/RM键,进行真运动和相对运动选择。
十一、按下OFF/CENT键进行偏心显示。
十二、按下MENU键有9个子菜单,
3. 游艇磁罗经
现代的探险船一般都在5000-10000顿左右,如果是极地探险吨位起码要在2万顿以上。船员一般都是25-30人,职务包括船长、大副、二副、三副、水手、轮机长、大管轮、二管轮、三管轮、机工、厨师、服务员、无线电操作员、
设备有雷达、导航仪、卫星示位标、GPS全球定位系统、测深仪、罗经、卫星接收操作设备等等。
游艇,是一种水上娱乐用高级耐用消费品。它集航海、运动、娱乐、休闲等功能于一体,满足个人及家庭享受生活的需要。游艇多作为公园、旅游景点的经营项目供人们消费,少量也作为港监、公安、边防的工作手段。游艇是一种娱乐工具这一本质特征,使它区别于作为运输工具的高速船和旅游客船。
4. 船用磁罗经的液体比例
原理它是以电子计算机技术为基础的自动雷达标绘仪,与普通船员用雷达,计程仪及罗经配接结构成ARPA系统,就能人工或自动雷达捕 捉(或称录取)多个目标,美工加以自动跟踪,然后在显示器上以矢量形式显示目标船的航向和航速,以数据形式显示CPA和TCPA等重要的避碰数据,还具有碰撞危险判断,报 警,试操船等多种功能,因此,ARPA替代传统的雷达人工标绘,使雷达在船舶避碰应用中发挥更大的作用。
一个基本的ARPA系统由传感器和ARPA本身两大部分组成, (一)传感器:
1,X和S波段的高质量船用雷达----为ARPA提供目标回波系统视频,向ARPA提供触发脉冲,旋转方位信号与中首信号。
2陀螺罗经----为ARPA提供本船航向信号 3计程仪----为ARPA提供本船航速信号,可有对水航速和对地航速。
4外存器----可贮存港口的视频地图或电子海图,在进出港时,可供船舶导航作用。 (二)ARPA部分:
1预处理电路----把雷达回波视频信号进行数字化,以便计算处理。
2接口电路----对输入ARPA的所有信号进行数字化。器对预处理过的目标回波信号进行自动检测。
3目标录取电路----用人工或自动方式将所选目标的位置数据送入跟踪器,作为设置跟踪窗的初始的位置数据。
4跟踪器----对已录取目标进行自动跟踪。 5电子计算机----是ARPA的核心,是一个微计算机系统,完成所有计算和控制工作。 6显示器----包括乎面位置综合图形显示器和数据显示器。 7控制台----通过设在操作控制台的操纵杆或跟踪球及其他操作按钮把操作信息送入计算机。 ARPA电源----为ARPA各部分提供各种电源。
一般海上航行,MIN CPA不得小于2-3n mile, MIN TCPA不得小于10 n mile. CPA>MIN CPA TCPA>NIN TCPA 表示该目标是安全船,与本船无碰撞危 险。 CPA<MIN CPA 表示该目标船是危险船,与本船有碰撞危险,但时间尚充裕,本船可及时采取避碰措施。 然而,ARPA性能和精度也存在误差,大致可分为:
1传感器误差。即雷达,陀螺罗经和计程仪的误差。
2.ARPA本身产生的误差。
3操作者的人为误差。即操作者对ARPA 显示数据的错误理解,经验不足或疏忽。 4本船和目标船机动的影响。 5航行态势对跟踪精度的影响。
5. 船舶磁罗经
船用磁罗经是用来指示船舶航向和观测物标方位的仪器。它通常和方位盘配合使用,方位盘又称方位仪、方位圈,是一种测向工具,呈圆形,上面刻有方位度数。这样,只要看一看磁针在方位盘上的位置,就能断定出方位来。 船用磁罗经它具有构造简单、不依赖于电源、不易损坏和价格低廉等优点,所以它至今仍然是不可缺少的航海仪器之一。 船用磁罗经又有驾驶罗经和标准罗经之分,其中标准罗经上装有方位盘,用来观测船位、太阳和物标方位等。
磁罗经通常安装在船的首尾线上,其基线应与船的首尾线重合或平行,罗经台座应安装平正,罗经周围不应放置铁磁物件,这样才能保证观测精度。
6. 船舶磁罗经图片
磁罗经 利用自由支持的磁针在地磁作用下稳定指北的特性而制成的罗经。
磁罗经由中国的司南、指南针逐步发展而成掌握方向用的测定方向基准的仪器。船舶用罗经以确定航向和观测物标方位。罗经分为磁罗经和陀螺罗经两种。航海船舶通常都装有两种罗经。磁罗经是利用磁针指北的特性而制成。指南针即是原始型式的磁罗经,是中国古代四大发明之一。用于航海的指南针又称罗盘。中国明代水罗盘用八干、十二支、四维卦位名称标出24个方位。铁船出现后,磁经产生了自差。19世纪以后,先后提出消除自差的方法,至20世纪初,性能稳定、轴针摩擦更小的液体罗经制成,已用于大部分船舶。罗经差还有磁差,是由于地磁极与地极不一致而存在于磁北和真北之间的夹角,即磁偏角。海图上的罗经花均标注有本地磁差和年变化率,使用磁罗经时可据以修正读数。罗经结构主要由罗经柜和罗经盆组成,带有磁针的罗经卡安装在盆内。磁罗经按结构又可分为干罗经和液体罗经两种。陀螺罗经又称电罗经,是利用陀螺仪的定轴性和进动性,结合地球自转矢量和重力矢量,用控制设备和阻尼设备制成以提供真北基准的仪器。陀螺罗经是由主罗经与分罗经、电源变换器、控制箱和操纵箱等附属设备构成。按对陀螺施加作用力矩的方式可分为机械摆式与电磁控制式两类陀螺罗经:机械摆式陀螺罗经按产生摆性力矩方式分为用弹性支承的单转子上重式液体连通器式罗经和将陀螺仪重心放在支承中心以下的下重式罗经;电磁控制式陀螺罗经是在两自由度平衡陀螺仪的结构上,设置电磁摆和力矩器组成的电磁控制装置,通过电信号给陀螺施加控制力矩。航行船舶上的陀螺罗经会因船舶运动而产生很多误差,如速度差、冲击误差、摇摆误差、纬度误差等;由于安装原因又有基线误差等。因此,均需采用相应措施加以消除或校正。7. 船用磁罗经的使用方法
指南针应用
指南针应用于航海 宋代在远洋航线方面没有什么扩展,但在航海技术方面却有划时代的创新。指南针在船上的应用,是航海技术上的重大突破。指南针是中国发明创造的,把指南针应用到船上也是从中国开始的。最早的记载是宋宣和年间朱彧的《萍洲可谈》和徐竞的《宣和奉使高丽图经》。航海使用指南针,不仅解决了恶劣天气下的海上求向问题,而且为仪器导航开辟了道路,人类从此才真正摆脱了海岸的羁绊而驰骋在更加广阔的海洋上。而航海技术的提高,反过来又促进了指南针的改善和发展,创造出更适用于航海的磁罗经,也称磁罗盘(见罗经)。南宋吴自牧《梦梁录》中说“风雨晦冥时,唯凭针盘而行”,针盘就是磁罗经。在12世纪船用磁罗经通过阿拉伯传入欧洲后,欧洲海员也开始使用。船上通用的磁罗经,则是经过19世纪末英国科学家开尔文改进的海军型磁罗经。
北宋科学家沈括发现地磁对指南针的影响。他在《梦溪笔谈》中记录了地磁有偏角,这一科学结论指出地点不同偏角的大小也不同。这一发现比1492年哥伦布横渡大西洋时的同一发现早4个世纪。不过地磁偏角的量值,则是1580年W.巴勒测得的,为 11°25′E。1724年G.格雷厄姆根据观测的结果,提出电磁偏角逐年在变化。
罗经自差也是中国最早提出来的。约在1652年前后,方以智《物理小识》提到铁器对磁针的干扰和海船不宜用铁钉的原因,因为“海咸烂铁,且妨磁也”。在西方,自差则是在18世纪才发现的。1724年前后,英国人J.史密斯发现木箱的铁钉会影响罗针的指向。1801~1802年,英国船长M.弗林德斯发现利用一根垂直软铁放在罗经前面,可以部分修正罗经自差;所以磁罗经的前面有一铜质垂直圆筒,内贮放筒形软铁。1839~1855年,英国皇家天文学家G.B.艾里提出,在罗经前后、左右和上下排列磁棒,可把罗经自差消除到最小程度。
助航设施的设立 在古代地中海沿岸就建有助航设施。公元前660年,小亚细亚西北部的特洛伊地方筑起灯塔,可能这就是灯塔的始祖。约在公元前280年,在埃及北部亚历山大港建造的灯塔,高逾200英尺,为古代世界七大奇景之一。
英国在1732年开始在泰晤士河口设置一艘小船,于横桁上悬灯一盏,指引行船,这是第一艘灯船。美国在独立战争前的1767年在特拉华河布设浮标,后在1820年换用圆柱形浮标。同年,在东部切萨皮克湾设置第一艘灯船。1850年,美国国会规定了水路标志的颜色和编号制度。19世纪末,铃声、汽笛、灯光浮标相继问世。1910年,在纽约安布路斯水道设置了用高压电石气的发光浮标,效果很好。
中国元朝海运漕粮,沿海岸航行,航道上有许多浅滩、暗礁,往往发生船沉人亡的惨剧。至大四年(1311年),海道府根据常熟州船户苏显臣等建议,在长江口西暗沙嘴设置了航标船,船上树立标旗,指引粮船进出。延祐元年至四年(1314~1317年),又在江阴的夏港、需沟等九处设置标旗;在龙山庙前,高筑土堆,四周砌垒石块,土堆上白天高悬布幡,夜间悬灯点火,指引粮船航行。这些航标的设置,对保障航行安全特别是沿海岸航行的安全起了有益的作用。
8. 船用陀螺罗经
船上的雷达要根据船是否匹配了电罗经来看显示屏。
如果船只较小,没有电罗经或者是有电罗经但是雷达没有匹配电罗经的话,此时在雷达显示屏上看到的目标位置是相对于船的相对方位,如X舷XX度,距离XX链。比较直接,但是对方的准确位置要通过在海图上计算才能得出。
如果匹配了电罗经,就比较方便,可以直接显示出目标的经纬度。但是没有经验的雷达兵容易看错,尤其是当航线不在000度时,容易乱,我在帮助工作时,当然对面的那条船上的雷达兵就出现过这个笑话。
9. 船上磁罗经的用途
磁罗经作用是指示航向、测物标方位。
1、磁罗经又称“磁罗盘”,是一种测定方向基准的仪器,用于确定航向和观测物标方位。它是在中国古代的司南、指南针基础上逐步发展而成。它是利用磁针受地磁作用稳定指北的特性制成的指示地理方向的仪器。
2、磁罗经主要由若干平行排列的磁针、刻度盘和磁误差校正装置组成,磁针固装在刻度盘背面,在地磁的磁力作用,使磁针的两端指向地磁的南北极,从而达到指向的目的。常在船舶和飞机上作导航用。