返回首页

船舶与海洋工程学习感想(船舶与海洋工程专业论文)

时间:2022-11-19 09:30 点击:110 编辑:邮轮网

1. 船舶与海洋工程专业论文

青岛黄海学院创建于1996年,是经教育部批准、具有学士学位颁发资格的普通本科高校。学校设有国际商学院、智能制造学院、建筑工程学院、艺术学院、学前教育学院、护理与健康学院、大数据学院、马克思主义学院、创新创业教育学院、国学院、继续教育中心、大学体育教学部等12个教学单位。开设36个本科专业、30个专科专业,涵盖工学、管理学、经济学、教育学、艺术学、理学、文学等学科门类。学校占地面积1582亩,建筑面积64.8万平方米,现有全日制在校生23000余人,教职工1500余人,科研仪器设备总值达1.35亿元。办学24年来,为社会培养了14万余名高素质应用型人才。

党建引领 健康发展

学校全面贯彻党的教育方针,坚持社会主义办学方向。学校党委坚持围绕中心抓党建、抓好党建促发展的理念,扎实开展了党的群众路线、三严三实、“不忘初心、牢记使命”主题教育活动。2016年在全省民办高校党建培训班介绍经验;2018年成立马克思主义学院,成为山东省首家成立马克思主义学院的民办高校,首批获评山东省社会科学重点研究基地的民办高校,民办高校第一家山东省示范思想政治教学部;2019年艺术学院教师党支部获评“全国党建工作样板支部”、智能制造学院党总支获评“山东党建工作标杆院系”,马克思主义学院党支部获评“山东省先进基层党组织”“山东党建工作样板支部”“山东教育系统先进基层党组织”。

区位优越 特色育人

学校坐落在国家级新区——青岛西海岸新区核心地理位置,交通便利,山海相间,气候宜人,宜学宜居。学校秉承“知行合一”校训,遵循“惟德惟能、止于至善”校风,践行“博学、慎思、明辨、笃行”学风,紧紧围绕高素质应用型人才的培养目标,实施质量立校、特色兴校、人才强校的发展战略,坚定不移地走内涵发展、特色发展、和谐发展、创新发展的道路。坚持德育为先,能力为重,精心打造学生德、能培养的特色平台,依托学校国学院、孔子学堂、雷锋纪念馆、博物馆、大学生就业创业孵化基地及工程训练中心等平台,着力打造优秀传统文化、红色历史文化、精品工匠文化、实践创新文化,形成了“四文化融合”的协同育人特色。

硬件齐全 实践育人

学校教学科研仪器设备总值1.29亿余元,馆藏纸质图书147万册,电子图书64万册,中外文期刊830种;校园无线网络全覆盖。建有多功能体育馆、大学生活动中心、标准塑胶运动场、足球场、荷球场、篮球场、排球场、网球场、室内乒乓球馆。建有博物馆一座,设中华古砚馆、汉画像砖展馆、古陶瓷文化展馆、奇石观赏石展馆、航空展馆等主题展馆。现有藏品8000多件,包含文房、明清字画、古籍、陶瓷、青铜器、汉画像砖、竹木牙雕等十几个门类。校内建有2个人工湖,素有杭州“小西湖”之称。春季樱花漫道,夏季杨柳依依,秋季丹桂飘香,冬季诗情画意,校园四季如画。

学校重视学生实践能力、应用技能和创新素质的培养。建有智能制造学院实验教学中心、建筑工程学院实验教学中心、财经学院实验教学中心、国际商学院实验教学中心、艺术学院实验教学中心、护理与健康学院实验教学中心、学前教育学院实验教学中心和公共实验教学中心等8个实验教学中心。学校目前共建有校内实验场所174个,实验室总面积2.5万余平方米,教学仪器设备近12000台套,学校实验室覆盖了现有的所有专业,覆盖比例达到100%。

学校建有建筑面积3.4万平方米的实训中心,包括数控技术、机械加工、汽车维修、电子电工、焊接技术、钳工技术等6个实训基地;建有稳定的校外实践教学基地124个,每年可接纳实习学生3000余名,满足了学生实习实训教学的需要。学校实习实训基地是青岛市首批高技能人才培养基地,2015年11月曾作为全国职业院校规范管理推进会暨集团化办学现场交流会的观摩现场。

师资优良 科研显著

学校实施人才强校战略,适应多样化办学需求,坚持内培外引相结合,校地、校企融合发展的工作思路,重视师德师风建设,不断提升教育教学水平,构建了一支多元化、高水平能基本满足应用型人才培养需要的师资队伍。学校现有专任教师1299人,教师中博士、硕士占83.16%,副高及以上职称教师占38.82%。专任教师中有省级教学名师、省级优秀教师、齐鲁首席技师、入选山东省首批科普专家人才库教师、青岛市教学名师、突出贡献技师等30余人。国家科技进步奖获得者、国家教学成果获得者、省级科技进步一等奖获得者等10人。双聘教师中,有中国工程院院士1人、外籍院士2人、长江学者1人,有泰山学者、教育部新世纪人才支持计划人才、泰山产业领军人才、省级有突出贡献中青年专家6人。近三年来,教师在各类教学比赛中获国家级、省级大奖300余项。

近年来,学校荣获国家级众创空间1个、省级实训基地1个,省级教学成果奖12项、省级精品课程18门、省级教改课题14项,主编教材和出版专著61部。学校承担国家自然科学基金立项1项,山东省自然科学基金立项2项,省部级项目12项、厅级项目94项,与企业签订横向课题14项,教师发表论文1461篇,其中国内核心期刊、国际三大检索收录120篇。获省厅级科研成果奖励12项,获得实用新型专利、发明专利70项,有省级“十三五”高校科研创新平台1个。

教学改革 质量为本

学校着力培育与打造亮点特色专业,其中机械设计制造及其自动化为山东省特色专业、山东省卓越工程师教育培养计划项目,物流管理、工程管理、船舶与海洋工程、经济统计学、环境设计等5个专业为山东省民办本科高校优势特色专业支持计划项目,船舶与海洋工程为青岛市重点培育学科,物流管理、电子商务等5个专业为青岛市校共建重点专业。机械设计制造及其自动化、船舶与海洋工程、物流管理、工程管理、电子商务5个专业获批山东省2019年度一流本科专业建设点,

建立数字化教学资源库,引进了超星泛雅网络、智慧树、山东省高等学校在线开放课程教学平台,3大平台近1000门课程已经面向全体师生开放。其中,智慧树平台120门课程、山东省高等学校在线开放课程平台83门课程已经作为教师授课、学生学习的辅导教学资源。出台《青岛黄海学院网络课程工作规范》,积极推进网络课程建设,立项建设在线开放课程10门。

学校全面开展素质教育,注重培养学生“手脑并用,做学合一”。通过开展与参加各类学科技能竞赛活动,培养学生的实践能力,提高学生的创新能力,人才培养质量和办学水平不断提升。近三年,师生在国家级、省级学科竞赛累计获奖1735项,其中参加数学建模大赛连获佳绩,获国家级一等奖2项、二等奖13项,山东省一等奖36项,三次荣获“全国大学生数学建模竞赛山东赛区优秀组织奖”。多人被评为“中国大学生自强之星”。学校发展特色体育项目—荷球,连续四年蝉联全国大学生荷球锦标赛冠军,学生连续多年代表国家队赴荷兰、匈牙利、印度等国参加国际比赛。同时,学校多次承办全国五人制足球赛、全国毽球比赛、全国青少年跆拳道比赛、全国花样轮滑等比赛、全国学生荷球锦标赛等比赛。

“新时代中国平衡与充分发展研究基地”获批山东省社科规划重点研究基地,思政教学部入选山东省示范思想政治理论课教学部, 雷锋纪念馆被评为“第三批山东省党史教育基地”“以雷锋精神兴校育人”被评为山东省校园文化品牌项目。我校荣获第五届青岛市高校思想政治工作集体创新奖。

2016年大学生就业创业孵化基地通过山东省商务厅省级外贸新业态主体认定,获批山东省跨境电商实训基地;黄海e代人创客空间也被国家科技部认定为第三批众创空间;获评全国民办高校创新创业教育文化建设奖、 山东省省级大学生创业孵化示范基地。2018年中国民办大学创业竞争力300强排名中位列榜首 。

助学帮困 制度保障

为帮助家庭经济困难学生顺利完成学业,我校建立健全了学生资助管理体系。实施国家奖学金、励志奖学金、助学金、信用助学贷款及学校奖学金、助学金、校企合作奖学金、求职补贴等“奖、助、贷、减、免、缓”助学帮困政策,制定了《生源地信用助学贷款评审管理暂行办法》《经济困难学生资格认定管理办法》《国家奖助学金评审管理暂行办法》《勤工助学活动实施办法》《特困生临时补助金制度》和《特困生学费减免政策》等相关资助政策,以帮助困难学生顺利完成学业。学生资助管理中心被评为“山东省百佳学生资助工作先进单位”,获评2017年全国民办高校学生工作创新二等奖。

服务就业 前程无忧

学校坚持以服务为宗旨,以就业为导向,以创新为动力,健全了就业组织结构和规章制度。建立订单培养、就业准入制度,创立毕业生召回制,形成完善的实习就业全过程服务体系,为每位毕业生打造了就业绿色通道。

学校注重职业素养教育,以工匠文化实践育人。学校坚持知行合一,倡导学以致用,积极打造由工程训练中心、工业机器人技术研发中心、大数据实验中心(与华为合作共建)、科技创新工作室等构成的“大国工匠实践育人平台”,与华为、青岛港、海尔、海信、北海重工、上汽通用五菱(青岛)、阿里巴巴等100余家公司企业建立了长期合作关系和校外实习实训基地,实行工学结合、校企合作、订单培养、顶岗实习培养模式。各项政策措施为学校高就业率保驾护航,赢得了国家、省市领导以及社会各界的广泛赞誉。

砥砺前行 硕果累累

办学24年来,为区域经济社会发展培养了13万余名毕业生。学校荣获全国示范学习服务中心、全国先进社会组织、首届黄炎培优秀学校、首批全国跨境电商专业人才培养示范校、教育部思政司全国首届民办高校党建和思政工作优秀成果一等奖、全国学雷锋基地先进单位、全国民办高校创新创业教育示范学校、青年之声国学教育示范基地、中华诗词培训基地、全国大学生数学建模竞赛优秀组织单位、全国大学生电子设计竞赛优秀组织奖、全国高校微课比赛优秀组织奖、山东省党史教育基地、山东省省级大学生创业孵化示范基地、全省创新创业典型经验高校、山东省民办教育先进集体、山东省社科规划重点研究基地、齐鲁诗教先进单位、山东省高校公寓管理先进单位、山东省能源管理与节能减排工作先进单位、山东省高校校园绿化管理工作先进单位、中国高水平民办大学校友会排行榜榜首等社会荣誉。

2. 船舶与海洋工程流体力学

其实也不难学,专业课程要有数学基础,高数要好,因为以后课程会涉及到流体力学、、材料力学、理论力学、船舶结构、船舶强度等,会涉及到高等函数的计算,其他的课程还好,不会涉及到一些计算,还有一些实际操作课程,一些专业实验:船模阻力实验、螺旋桨试验、船模自航试验及结构实验应力分析等。

如果以后毕业不去理论性比较强的地方,如研究所、审图中心之类,力学课程等能合格就行,总体来说除了力学课程,很多计算,其他的课程还有很有意思的

3. 船舶与海洋工程专业论文选题

航海技术杂志是国家级论文期刊。航海技术由中国航海学会主办,中国科学技术协会主管的正规期刊。

《航海技术》(双月刊)创刊于1979年,由中国航海学会主办。办刊宗旨是:传播先进的航海应用技术,提高人员素质,保障船舶安全,保护海洋环境,促进航运企业经营效益提高。

办刊的方针是:从航海工作者中来,到航海工作者中去,从航海实践中来,到航海实践中去,把《航海技术》办成海事部门与航运单位之间、航海教育与航运实践之间、航运单位之间以及广大船员之间进行技术与信息交流的平台。

杂志的栏目有:航海与船舶操纵、物流与货运、通信与导航、船舶机电管理与故障分析、环保与防污染、船舶管理、教育培训与法规法则、航海科技动态与信息。

4. 船舶与海洋工程专业论文怎么写

海洋资源开发技术专业考研方向共有4个,分别为物理海洋学专业方向、声学专业方向、水声工程专业方向、海洋科学专业方向。

海洋资源开发技术专业考研方向1:物理海洋学

专业介绍

物理海洋学是海洋科学的一个二级学科,主要是运用物理学的观点和方法研究海洋中的力场、热盐结构、以及因之而生的各种机械运动的时空变化,并研究海洋中的物质交换、动量交换、能量的交换和转换的学科,是海洋物理学中的一个分支。

研究方向

浅海动力学、灾害性海洋动力过程、波浪理论与应用、海洋环流与应用、环境海洋学、海洋物理监测原理及技术。

就业方向

就业领域的重点是海洋交通运输业、海洋渔业、海洋油气业、滨海旅游业、海水利用、海洋制药、海洋保健品开发、海盐及盐化工业、海洋服务业、海洋能发电、海水化学元素提取、海洋采矿业,以及新兴的海洋空间利用事业等。

海洋资源开发技术专业考研方向2:声学

专业介绍

声学是物理学的一个二级学科,是研究媒质中机械波(即声波)的科学,研究范围包括声波的产生,接受,转换和声波的各种效应。同时声学测量技术是一种重要的测量技术,有着广泛的应用。最简单的声学就是声音的产生和传播,这也是声学研究的基础。

培养要求

声学要求学生在本学科专业领域掌握坚实宽广的基础理论和系统深入的专门知识,了解有关声学发展的国际前沿领域和发展动态,具有一定的分析问题和解决问题的能力和较强的独立从事科学研究的能力,在科学研究和专门技术上做出创造性成果。

就业前景

在当前大学生就业形势严峻的背景下,毕业生的深造比例达50%以上。超过 60% 的毕业生继续深造,毕业生一次性就业率长期保持在100%以上。

声学的就业方向是:高等院校、科研院所和高科技公司。主要从事音频工程,建筑声学,噪声控制,超声电子器件,超声医疗仪器,以及 IT行业等领域相关的各类工作。

海洋资源开发技术专业考研方向3:水声工程

专业介绍

水声工程为国家重点学科,本学科所依托的国家级“水声技术重点实验室”作为我国水声技术基础研究最重要的研究单位之一,研究方向基本涵盖了水声技术的全部研究领域,基础研究、应用技术研究、水声装备研制和系统集成技术研究等多方面和谐发展。

培养目标

本学科培养兼顾声学、振动和信号处理的高层次水声研究人才。学位获得者应具有扎实的声振基础理论知识,掌握水声学科的特点和发展方向,具备从事水声工程应用基础研究的能力。通过硕士阶段学习和论文工作的锻炼,培养理论和实践方面的独立工作能力,能对与本学科有关的实际问题作出有创新的研究成果。

发展前景

水声工程专业的一级学科是船舶与海洋工程,以国防领域为主要研究背景,涉及声学、水声学、信号处理、测试技术等多种学科的基础理论和技术。人才众多,就业前景比较光明,就业面宽。在未来迅速发展的声学领域中,具有较强的竞争能力和发展前景。

海洋资源开发技术专业考研方向4:海洋科学

专业介绍

海洋科学专业培养具备海洋科学的基本理论、基础知识和基本技能,能在海洋科学及相关领域从事科研、教学、管理及技术工作的高级专门人才。

培养要求

该专业学生具有坚实的数学、物理学及海洋科学方面的基本理论和基本知识,受到海洋科学研究方面的基本训练,掌握海洋科学基本调查方法和实验技能,具有从事海洋调查和海洋科学研究的基本能力。  

就业前景

国家对于海洋科学采取积极支持发展的政策,也大力发展海洋科学的教育。如今海洋科学专业的毕业生一般采取自主择业、双向选择的就业政策。当下随着行业的发展,如今该专业的毕业生就业状况较佳,特别是海洋资源开发、海水养殖、海洋生物医药、海上运输、海洋油气开发和食品工业等部门吸收人才最多。近几年,我国在海洋科学上取得了巨大的成绩,尤其是在海洋资源利用、海底石油勘测、海产品生产等方面,已经达到世界领先地位。因此该专业就业形势良好,由于该专业工作环境的特殊性和国家的政策倾斜,从业人员的收入状况良好,且有持续增加趋势,特别是该专业的高级人才供不应求,所以行业制定优惠政策以吸引人才。

5. 船舶与海洋工程专业论文选题方向

毕业于鲁东交通大学

一、学院概况

   交通学院是鲁东大学最早的工科学院之一。学院始终坚持“厚德、博学、日新、笃行”的办学理念,历经艰苦创业与时代变迁,已经发展成为面向交通、工业、服务业三大产业,拥有交通运输系、机械设计及其自动化系、物流工程系、船舶与海洋工程系等的多学科的人才培养基地人;交通运输工程为山东省重点学科(强化),在校全日制本、专科生2000余名,近70名教职工,已经成为鲁东大学实力较为雄厚、发展势头强劲的教学科研型院系。

二、专业设置

       学院设有4个本科专业(交通运输、机械设计制造及其自动化、物流工程和船舶与海洋工程)。学院坚持“厚基础、宽口径”的教学方针和以人为本的办学理念,每个本科专业设置2个专业方向,其中交通运输专业下设汽车设计与运用、汽车电子与电器工程两个专业方向;机械设计制造及其自动化专业下设机械设计制造及其自动化、车辆工程两个专业方向;物流工程专业下设物流系统规划与设计、物流技术与运作管理两个专业方向。专业方向的细化,对激发学生学习兴趣,实现学生的特色培养起到了重要作用。

  三、科学研究

  学院特别重视科研团队建设,统盘考虑教师队伍、研究基础、地方经济特色和国家重大需求等因素,成立3个研究所:汽车安全与节能技术研究所、切削加工工艺技术研究所、机械产品创新设计与实现技术研究所。

近年来,交通学院科研工作成绩斐然,学院教师先后获得国家科技进步三等奖、国家教育部科技进步二等奖、山东省科技进步二等奖等省部级及以上奖项4项;主持或参与国家自然科学基金、863、973等国家级项目4项,省部级项目4项,其它项目25项;发表学术论文280余篇,其中SCI、EI检索81篇;获得专利16项,其中发明专利4项;出版著作、教材10余部。

 

  四、人才培养

  学院坚持以人为本,以学生成才为教育教学工作的中心,根据区域经济和社会发展实际需要适时调整教学计划,培养了大批品学兼优,社会急需的专业技术人才,毕业生以其扎实的专业功底和踏实的工作作风受到了用人单位的好评,部分毕业生已成为交通、机械、物流行业的管理和技术骨干,不少人走上了领导岗位。近年来,毕业生就业率一直保持在98%以上,2009年、2010、2011年被学校授予学生就业工作先进单位。

  近年来,学院始终坚持以学风建设为核心,以考研率、就业率、学位获取率为评价指标,致力于提高学院学生的专业学习能力、科技创新能力和实践动手能力。学生近年来获得全国大学生“挑战杯”全国三等奖、山东省特等奖、大学生机电产品创新设计竞赛一等奖、“机器人大赛”一等奖等10余项省级以上奖励;参加教师指导的大学生创新研究试验项目35项;2010届毕业生有124名同学考取研究生,考研率为32%,其中有86名同学考取同济大学、吉林大学、南京航空航天大学、华南理工大学、哈尔滨工业大学、北京交通大学等全国“211工程”“985”重点大学的研究生。

学院被评为“鲁东大学综合治理先进单位”、“鲁东大学大学生科技创新先进集体”、“鲁东大学优秀团总支”、“鲁东大学先进学生党支部”、“山东省社会实践先进集体”等荣誉称号。

  

  

6. 船舶与海洋专业导论论文

造船专业很系统,本科要学习4年。如果你有一定的理工基础的话,仅仅向看看专业书籍的话,推荐你看看:

《船舶概论》

《船体结构》

《船舶静力学》

《船舶建造工艺学》

《船舶原理(上下册)》(上海交大版)

《轮机概论》

这些书都可以在网上搜到,无论是国防版还是交大版还是各高校版本,都适合你阅读。

7. 船舶与海洋工程专业导论

海洋机器人就业前景还可以,水下机器人市场正处在初步起步阶段,相信随着政府对海洋开发力度的加强,资本的关注,必将使水下机器人行业的发展带来更多机会。

海洋机器人是一门将水动力分析、控制技术、传感器技术、人工智能、计算机仿真等高科技手段综合运用于海洋领域的新兴交叉学科。主要研究智能水下机器人、遥控水下机器人、水面无人艇等海中无人平台的基础理论和应用技术。例如:海洋机器人操作,水下考古挖掘、水下探险,水下科研等。

8. 船舶与海洋工程专业论文题目

按校方的说法是三海一核,传统优势院系是1、3、4、5、15系,对应的专业分别是船舶、轮机工程、自动化、水声工程,核工程。

其中船舶、轮机、水声都是船舶与海洋工程一级学科下的二级学科,哈工程的船舶学科评估是A+,和上交并列。也就是说这三个专业都很强。

自动化作为热门主流学科,这次的学科评估是A-,可能是211非985里面最强的了。

核工程学科评估B+,并列第三,作为核工程领域的四大高校(清哈两交)之一,无论是办学历史还是现在的实力都还是挺不错的,在业内的影响力不比在船舶行业差。哈工程的核学科已经培养了宣益民、李建刚两位院士,未来可能还会有其他的校友当选。

上面是从专业实力的角度来说。从就业待遇上来说就是另外一回事了,从毕业生收入来看,4系、6系、8系最好,也就是自动化、计算机、通信专业。一方面是行业差距,另一方面是哈工程的上述弱电类专业实力也很不错,计算机和通信的学科评估都是B+,整个弱电大类的学科评估成绩,大概只弱于北邮、西电这两所行业211,比起其他分数高一截的211来,也丝毫不虚。

夸奖完毕,说一下个人对学校各院系发展的看法。

船舶学院作为一系,一直以来给人的印象是哈工程最强的院系。可是从目前的一些硬指标,包括从发展势头来看,一系未必是最强的院系了。虽然学院宣传各人才指标,什么优青一人、青年长江学者一人、什么万人计划领军人物一人之类,可是知情人士都清楚,其实这都是一个人。张阿漫老师一个人贡献了大部分的人才称号,一系目前也就段文洋、张阿漫、李晔等屈指可数的几位老师算是有国字号的人才称号,其他老师都没有。对于一个龙头院系来说,这个高层次人才数量显然是不够的。

此外,学术上近亲繁殖严重,多数老师学术能力不足以让人信服。学院管理水平也不让人满意,学院网页稀烂,很少更新信息,和三四五系的学院网站比,差太远了。学校的教师个人主页实行那么久了,一系的老师们有三分之二都不去维护个人主页,个人简介、研究方向、研究成果都不公开,真的忙到没时间打理吗?还是成果羞于展示?三四五系的院系的老师们个人主页信息都维护的很好。徐玉如院士去世后,一系的国字号重点实验室便甚少像样的产出,光有经费没有成果,总不是长久之计。

虽然这次学科评估a+,不少一系的师生很骄傲。但很大程度上是三系和五系的功劳,要认清这一点。单论船舶设计制造的学科实力,哈工程是远逊于上海交大的,之所以船舶与海洋工程能和上交并列a+,是因为在师资水平和科研成果上,轮机和水声对船舶学科评估的贡献很大。要知道大连理工、上交是没有水声、轮机专业的,而哈工程的水声、轮机都有上百的老师人数。

二系的专业太多太杂,学院没有足够的实力兼顾,这是很遗憾的事情。哈工程的航空航天专业底子很好,培养了不少人才,沦落到现在的地步,连个一级学科博士点都没有,太遗憾了。这是所有211大学的痛,经费有限,不能兼顾所有学科,不用多久,就拉开了和985大学的差距。目前来看学院的重点是发展力学学科,工大来的吴副校长是力学长江学者,给二系带来了一个工信部重点实验室,下次学科评估能否更进一步呢?作为一个重点是研究船海的学校,离不开力学的支持,一个强大的力学学科是必要的。如果能够获得B+,那将会是一个合格的成绩。这次学科评估力学是B级,中规中矩,还不足以支撑学校船海学科的发展。

由于前校长的缘故,三系的实力进步迅速。无论是科研奖励,还是获得国字号荣誉称号的老师数量,都已经超越了一系。比如说李玩幽、杨铁军、靳国永、杜敬涛为代表的一批老师们。其他八零后新生代的师资水平平均水准也强于一系,这和三系一直坚持引进外校毕业的老师是有关系的。如果轮机工程的研究成果不算到船舶专业,而是打包到动力工程及工程热物理,那么下一次学科评估哈工程的动力学科甚至有可能冲击A-。有难度,不过不是没有希望。

四系作为第一大学院,学科实力强,就业去向好,是一系三系的孩子们羡慕的对象。自动化这种热门学科能够a-,是非常不错的成绩。下次评估,能够保持就很满意了。四系新院长青年才俊,很想有一番作为,从工大过来的姚校长也是搞自动控制的长江学者,四系的发展值得期待。哈工程就应该发展自动化这种本身底子好,又能吸引考生的学科,而不是傻傻的宣传三海一核,把人都吓跑了。放着211中最好的自动化专业不去宣传,而是去宣传船、核这种超级大冷门,分数线哪里能高的了。

如果说三系已经超越了一系,那五系就是自始至终的龙头院系了。一直以来,哈工程的水声学科实力都是最强,不管是和校内其他专业比,还是跟其他学校比。两位院士坐镇,长江学者、创新人才一应俱全,师资实力在哈工程算是最豪华的了。学生读研率八成,远高于其他院系。如果哈工程没有船舶轮机,只依靠水声专业的实力去参加船舶与海洋工程的学科评估,我想也会是A+。水声学院院长也非常年轻,观察下来,学院的发展势头和四系一样,都很不错。

从学校的官网上看到新增招生专业的公示,五系打算开设海洋信息工程本科专业,这是打算把海洋信息学科领域做大的节奏。需要强调的是,这一拟开设的专业属于电子信息一级学科,而不是和水声工程一样属于船舶与海洋工程一级学科。这才是正确的划分,其实水声工程也更近似于通信,而不是船舶。就业去向也更趋向于通信专业。去华为中兴的很多。

发展海洋信息学科,也就是发展信息学科了,对于考生的吸引力会大不少。热门学科能够吸引人,整个学校才有吸引力。

从就业上来讲,六系是哈工程最好的专业,其他也没必要评价了。

七系传统工科,中规中矩,目前并不是学校发展的重点。在现有的资源下,如果能够在水下机械这一细分领域做到国内顶级,已经是很好的成绩了。

八系信通和六系一样,实力不错,B+,就业又好。如果水声工程打包到通信学科的评估,那么哈工程的通信有冲击A-的希望。

虽然全国经管都很热,但哈工程的经管确实不是校内重点。

十系材料在哪个学校都是刷论文的利器,每个学校都少不了它。

理学院已经分家了,分成了物理光电学院和数学学院。物理学院的光学工程是发展的重点,实力还可以。数学学科已经获得一级学科博士点,如果物理专业如果能够获得博士点,那就圆满了。一所工科大学离不开数理基础学科的支持,哈工程至今没有培养出杰青,和重工程轻学术不无关系。数学、物理学科对其他工科专业的支撑作用是巨大的。

十五系是三海一核中的那个“核”,实力和受重视程度没得说。虽然和1、3、4、5系比在规模上要小不少。

能称为一核,很大程度上是因为在行业内的影响力,包括培养了众多优秀校友。学院本身的师资力量还有待加强,有规模,也要有精度,不能只依靠人海战术。

如今学校重点发展船舶与海洋工程装备、船舶动力、海洋信息、核工程这四个学科群,如果在下次学科评估中船舶继续A+,自动化继续A-,动力工程及工程热物理、信通工程能够从B+进步到A-,那就可以说达成目标了。如果力学、机械、光学等支撑学科有一两个进步,那就更完美了。我想,这也是校方努力的目标。

哈工程的青岛校区起了个大早赶了个晚集,如今终于开建,烟台研究生院也进展迅速,这是实实在在的好消息。哈尔滨这个城市目前不止限制了哈工大,更限制了需要海的哈工程。如果能够在青岛有新的校区,那么哈工程就不会是现在这个分数线了。

2019.8.16补充:国家自然科学基金公布,哈工程杰青一个,优青光头。自然科学基金项目总数80出头,排名一百多位。这个结果真是让我震惊到了,沦落的比想象中还要快。校领导们该警醒了。加快异地校区的建设,熬过阵痛期,还有重振的可能。死守哈尔滨,未来会越来越差。

9. 船舶与海洋工程专业论文舱口盖

世界航天史

开普勒所著的书籍

探索浩瀚的宇宙,是人类千百年来的美好梦想;自从1957年10月4日世界上第一颗人造地球卫星;航天技术是现代科学技术的结晶。世界航天史包括:一、火箭技术;二、卫星时代;三、空间探测;四、载人航天。

基本信息

中文名

世界航天史

出版物类别

航天

作者

约翰尼斯·开普勒

目录

正文

━━━━━━━━━━━━━━━━━━━━━━━━

从幻想到科学

古代火箭的发展

近代自然科学提供的条件

科学幻想作品的启迪

克服地球引力的努力

航天先驱者

V-2火箭的历史作用

冲出大气层

航天新纪元

第一颗人造卫星的发射

卫星的发展和应用

深空探测

月球探测

行星探测

人进入太空

第一个航天员

登月

飞船空间对接

在空间建立基地

“天空实验室”

“礼炮”号航天站

“空间实验室”

航天飞机出现

━━━━━━━━━━━━━━━━━━━━━━━━

遨游太空是人类自古就有的愿望。古代火箭的发展、16世纪以来科学技术的进步、现代工业的兴起使人类得以从幻想转向科学探索。19世纪末20世纪初,在一些工业比较发达的国家出现了一批航天先驱者。他们开始研究和解决航天的科学理论和工程技术问题,还着手设计和试验火箭。经过大约半个世纪的努力,人类终于把人造地球卫星送入太空,从而开创了航天纪元。自从1957年第一颗人造卫星上天以来到1984年底,苏联、美国、法国、日本、中国、英国、印度等国家以及欧洲空间局先后研制出近80种运载火箭,修建了10多个大型航天器发射场,设计、制造和发射了3022颗人造地球卫星、100多个载人航天器及109个空间探测器,建立了完善的跟踪和测量控制系统、地面模拟试验设施、数据处理系统。约有40个不同用途的应用卫星系统投入运行。一些不能独立研制或没有条件发射航天器的国家通过购买、租用或委托发射也有了自己的卫星或获得卫星服务。航天国际合作广泛开展,形式多样。苏联的航天站已能在太空持续运行58个月,航天员在太空的持续飞行时间长达236天22小时50分。美国航天飞机进行了14次飞行,完成了运送和回收卫星的双向运载任务。先后有14个国家的150余名航天员进入太空,12个人踏上月球。空间探测器已经成功地考察了太阳系的许多行星,实现了在金星和火星上软着陆,探测了水星、木星、土星,有的将飞出太阳系进行科学探索。几十年的航天活动促进了国民经济的发展和科学技术的进步,对人类社会生活也产生了深远的影响。

从幻想到科学

航天思想萌芽于古代人们对太空的向往。但是科学地论证克服地球引力场的条件,只有在经典力学,特别是天体力学的基础上才能做到。

古代火箭的发展  航天离不开火箭。火箭是在火药发明以后为适应军事和娱乐需要而出现的。火箭约在12世纪出现于中国(见中国古代火箭)。在13世纪,中国、印度和阿拉伯国家都使用过火箭,以后火箭又传入欧洲。这个时期的火箭比较原始,通常用层纸卷成药筒,内装火药,把药筒绑在细长的箭杆上,靠点燃药筒的引线发射。从13世纪到18世纪中叶,火箭技术的进展比较缓慢。18世纪后期,印度军用火箭取得较大进步。药筒改由铁皮制造,能够承受较大的燃烧压力。火药的性能也有了改善。火箭的射程已可超过 1公里。印度军队在抗击英国和法国军队的多次战争中曾大量使用火箭并取得了良好战果。

印度军队成功使用火箭的战例推动了欧洲火箭技术的发展。曾在印度作战的英国军官W.康格里夫对印度火箭作了改进。他确定了黑火药的多种配方,改善了制造方法并使火箭系列化。火箭的性能进一步提高,最大射程可达3公里。19世纪初,英军在多次大的战役中使用了康格里夫火箭,取得了显著的效果,促使欧洲许多国家研制火箭并建立火箭部队,黑火药火箭获得更广泛的应用。19世纪70年代以后,火炮技术有了新的突破,特别是线膛炮的成功应用使火箭在使用性能方面远不如火炮,火箭的发展也就变得缓慢。但古代火箭的演进为现代火箭的发展奠定了基础。

近代自然科学提供的条件  16世纪中叶,波兰天文学家N.哥白尼创立了科学的日心地动说,改变了当时人们对宇宙的认识。之后,天文学家第谷·布拉赫通过大量天文观测获得了有关行星运动的丰富资料。J.开普勒对第谷的观测资料用数学方法进行了分析计算和研究,发现了行星运动三定律,为经典天文学奠定了基石。1609年,伽利略用自制的望远镜巡视星空,使人类对太空的认识产生一个飞跃。伽利略还发现了自由落体定律和惯性原理,为经典力学的发展做出了贡献。1673年,荷兰物理学家C.惠更斯从单摆和圆周运动的实验得出向心力定律。I.牛顿根据运动的现象研究自然界的力,在1687年发表了他的不朽著作《自然哲学的数学原理》。他在这本书中提出了万有引力定律和三大运动定律,创立了天体力学,使人们得以从动力学的角度来研究天体的力学运动。经典力学,特别是天体力学是航天先驱者寻求克服地球引力而进入太空的途径的理论基础。

科学幻想作品的启迪  科学幻想常常寓有科学的预言,能够启发人们作出重大的发明和创造。将天文知识与循理虚构的故事结合起来的太空飞行幻想小说起源于17世纪。开普勒是最早撰写太空科学幻想小说的作家。他的作品《梦游》描述了人飞渡月球的情景。在17世纪的太空幻想小说作家中,法国的S.C.德贝尔热拉克最富有想象力。他在《月球旅行》一书中设想了多种推进方法,包括火箭和利用太阳能的喷射推进器。1783年第一个载人气球升空后,人们发现垂直向上的飞行能力是极其有限的。高度越高,空气越稀薄和寒冷,为人所不能忍受。人们从而懂得了航天与大气层内飞行有质的不同。此后半个世纪,有关太空旅行的科学幻想作品出现了低潮。19世纪60年代这类作品再度兴起。法国A.艾罗、美国E.E.黑尔、德国K.拉塞维茨和英国H.G.威尔斯等作家所写的太空旅行著作吸引了许多读者,而法国著名作家J.凡尔纳的《从地球到月球》(图1)和《环游月球》产生的影响更为广泛。17世纪以来的科学幻想小说与古代神话传说有根本区别。前者在科学的基础上加上合理演绎和设想,虚幻之中寓有合理的思路。它唤起了人们对航天的兴趣,使航天爱好者从中得到启发和鼓舞。

世界航天史

克服地球引力的努力

航天先驱者  19世纪后期到20世纪初,涌现出许多富于探索精神的航天先驱者。他们对航天事业的早期发展做出了重大贡献,其中影响最大的是К.Э.齐奥尔科夫斯基、R.H.戈达德和H.奥伯特。

俄国的齐奥尔科夫斯基最早从理论上证明用多级火箭可以克服地球引力而进入太空。他建立了火箭运动的基本数学方程,奠定了航天学的基础。齐奥尔科夫斯基的另一重要贡献是肯定了液体火箭发动机是航天器最适宜的动力装置,为运载器的发展指出了正确的方向(图2)。

美国的戈达德博士把航天理论与火箭技术相结合。他在1919年出版的《到达极大高度的方法》论文中提出了火箭飞行的数学原理,指出火箭必须具有7.9公里每秒的速度才能克服地球的引力。他认为只有液体火箭才能提供航天所需的能量,因而从1921年开始研制液体火箭。1926年 3月16日他制造的液体火箭(图3)首次飞行成功,达到12米高,56米远。这是世界上第一次液体火箭的飞行试验,而戈达德也就成了液体火箭的实际创始人。

世界航天史

世界航天史

1923年,德国的奥伯特出版了《飞往星际空间的火箭》一书,论述火箭飞行的数学理论,并提出许多关于火箭结构和飞行的新观念。奥伯特的理论受到了广泛的注意,激起当时许多青年进行实践的迫切愿望。在许多国家开始出现火箭和航天爱好者的研究组织。1927年,太空旅行协会创立于德国,奥伯特任会长;1928年,反作用运动研究组成立于苏联;美国星际协会组建于1930年;英国星际学会出现在1933年。这些组织中的不少成员后来都成为本国研制第一代火箭的领导人。

V-2火箭的历史作用  30年代各国航天爱好者自发组织起来的火箭团体在开展活动的初期都遇到了困难,缺乏资金,受到社会人士的冷落。只有两个国家──德国和苏联的青年火箭专家得到了国家的支持。德国人对于尚处在萌芽状态的火箭的军事潜力寄予希望。德国当时负责火箭研制工作的W.R.多恩伯格把研制火箭的课题委托给太空旅行协会的青年专家 W.von布劳恩。布劳恩领导的火箭设计研究小组设计的第一代液体火箭 A-1因结构不合理而遭到失败。但 A-1的改进型 A-2却于1932年12月试射成功,飞行高度达到3公里。1935 年开始研制第二代火箭A-3,重750公斤,推力达14.7千牛(1500公斤力),采用再生冷却式燃烧室和燃气舵等新技术。1936年4月,德国陆军增加拨款发展火箭技术,并在波罗的海海滨的佩内明德兴建火箭研究中心,同时研制V-1飞航式导弹和V-2弹道导弹。V-2(见V-2工程)是在A-3试验火箭基础上改进而成的,因而还有A-4的代号。

V-2导弹于1942年10月3日首次发射成功,飞行180公里(图4)。它是历史上的第一枚弹道导弹。V-2在工程上实现了20世纪初航天先驱者的技术设想,对现代大型火箭的发展起了继往开来的作用。V-2火箭的设计虽然不尽完善,但它却是人类拥有的第一件向地球引力挑战的工具,成为航天发展史上的一个重要的里程碑。

世界航天史

冲出大气层  冲出大气层是人类向空间进军的序曲。大气层保护了人类免遭空间粒子辐射的伤害,为人类繁衍生息创造了条件,但大气折射、漫射和对某些波段辐射的选择吸收使人类对宇宙奥秘之探索受到限制。要实现航天的愿望,首先必须突破大气层的屏障。从19世纪末到20世纪初,人们开始用气球、飞机和探空火箭向大气高层冲击。到第二次世界大战结束时,飞机的升限达到了15.23公里,气球达到了32公里的高度。1946年,美国发射缴获的V-2,测到了112公里高度的大气数据。1949年,苏联用P-2A探空火箭携带860公斤的仪器设备上升到212公里的高空。1949年2月,美国以V-2为第一级,“女兵下士”火箭为第二级组成的“丰收”号探空火箭,创造了393公里的高度纪录,获得了高层大气参数、化学成分和辐射强度等资料。50年代初,为了参与1957~1958国际地球物理年的活动,法国、日本、加拿大、澳大利亚等国也都发展了探空火箭。

航天新纪元

第一颗人造卫星的发射  第二次世界大战结束后,苏联和美国都通过仿制德国 V-2火箭建立了火箭和导弹工业,并且积累了研制现代火箭系统的经验。一些科学家已经看到,在V-2技术成果的基础上有可能发射人造地球卫星,而借助载有仪器设备的卫星可以更有效地开展空间科学研究工作。1946年1月,美国成立了V-2高级研究委员会,决定将V-2作为发展新型导弹的试验工具和研究高层大气的探空火箭。1954年召开的地球物理学国际会议建议有关国家在1957~1958国际地球物理年期间发射人造地球卫星。在这一年,美国和苏联都开始着手人造卫星及其运载火箭的方案探索工作。在美国,陆军提出了用“丘辟特” C运载火箭发射“探险者”号卫星的“轨道器”计划,海军建议在“海盗”号探空火箭的基础上加上两级固体火箭组成“先锋”号运载火箭发射“先锋”号卫星,空军则主张用MX-774火箭发射卫星。为了不影响战略导弹的研制工作,美国政府在1955年决定采用海军的“先锋”号运载火箭方案,并计划在1957年10月发射卫星,但“先锋”号火箭在1957年9月的首次试射中没有获得成功。

苏联在1954年基本上解决了多燃烧室发动机的设计和工艺问题,并有可能在较短时间内研制出推力达980千牛(100吨力)的液体火箭发动机,因而决定采用捆绑技术来研制P-7洲际弹道导弹,计划在P-7导弹研制成功后将几枚P-7导弹改装成“卫星”号运载火箭,用以发射人造地球卫星。1956年末,苏联获悉美国运载火箭已进行飞行试验,而苏联正在研制的人造卫星因技术较复杂,短期内难以完成。为了赶在美国之前发射卫星,苏联决定将原计划确定研制的卫星暂时推迟,改为先发射两颗简易卫星。1957年8月21日,P-7洲际导弹首次全程试射成功,同年10月4日,苏联用“卫星”号运载火箭把世界上第一颗人造地球卫星(图5)送入太空(见““人造地球卫星”1号工程)。这颗卫星正常工作了3个月左右,成为第一个被人类送入太空的航天器,实现了人类千百年来的梦想。这颗卫星的发射成功开创了人类的航天纪元。(见彩图)

世界航天史

世界航天史

卫星的发展和应用  苏联第一颗人造地球卫星的发射成功在国际上产生了巨大的影响,对许多国家的运载火箭和航天器研制工作起到了积极的推动作用。为了摆脱落后局面,美国在继续抓紧“先锋”号计划的同时又恢复了“轨道器”计划。1957年12月,“先锋”号火箭发射卫星失败。1958年1月31日,美国用“轨道器”计划的“丘辟特”C火箭(当时已改名为“丘诺”1号运载火箭)发射成功自己的第一颗卫星“探险者”1号(见“探险者”号卫星)。这颗卫星比苏联第一颗卫星晚发射了3个多月,重量只有4.8公斤,但它却取得了重要的科学发现。物理学教授J.A.范爱伦根据卫星携带的盖革计数器因磁饱和没有输出的现象,发现了地球辐射带(后称范爱伦带)。此后,卫星的发射越来越频繁,世界上越来越多的国家参加到航天活动行列中来。继苏联和美国之后,法国在1965年11月26日、日本在1970年2月11日、中国在1970年 4月24日、英国在1971年10月28日、欧洲空间局在1979年12月24日、印度在1980年 7月18日相继用自行研制的运载火箭成功地发射了自己的第一颗人造地球卫星。

从60年代中期开始,人造卫星的发展已从探索试验阶段进入实用阶段。各种应用卫星相继投入使用,取得明显的军事、经济和社会效益。科学卫星和技术试验卫星获得相应发展,取得一些重要发现和技术成果。卫星的发射数量急剧上升,应用范围日益扩大。70年代以来,各种卫星逐渐向多用途、长寿命、低成本和高可靠性的方向发展,在发射数量上有所减少,但质量却有显著提高。

航天器的研制带动了其他工业部门的发展,促进了科学技术的进步。航天技术成果的应用对于社会生产力的发展产生了巨大的影响。航天技术领域的许多新设计、新结构、新材料、新工艺、高可靠性的元、器件和精密仪器逐渐推广到其他领域中应用,大大提高了产品的质量和劳动生产率。但是更主要的还是直接利用卫星完成军事和国民经济使命,起到其他手段无法起到的作用。60年代以来,应用卫星发射总数已超过2500颗,其中以苏联的数量为最多,约占总数的三分之二。应用卫星的种类繁多,有直接为军事目的服务、支援地(海)面武装力量的照相和电子侦察卫星、预警卫星、海洋监视卫星和核爆炸探测卫星,有攻击敌方航天器的反卫星系统,有军用和民用通信卫星、导航卫星、气象卫星和测地卫星,还有民用的地球资源卫星、天文卫星、生物卫星、广播卫星(图6)和其他科学探测卫星。

世界航天史

应用卫星的功能不一,使用要求也不同,但技术发展的进程大体都经过以下3个阶段:①技术试验阶段:主要是探索实现途径、发展专用设备,进行地面和飞行试验,验证工作原理和设备功能,如40年代后期开始的以月球作为对象进行的被动通信试验,直至50年代的无源中继卫星和1960年10月的有源通信卫星的技术试验。②半实用阶段:发射能在有限时间和空间内服务的卫星,如气象卫星、导航卫星和侦察卫星的早期型号,它们所取得的信息和提供的服务都是局部的。③实用阶段:70年代航天活动的特点之一是发展各种使命的卫星应用系统,也就是陆续发射多颗卫星,使之按一定规律运行,组成空间卫星网和地面设备配套的系统,实现时间、空间连续服务。现在正在使用的卫星通信、气象、导航和军用系统大约有40多个。在一个应用系统中往往有多颗卫星,有的多达24颗卫星,而且卫星的寿命有限,还需要不断补充新的卫星。如美国的照相侦察卫星系统已发展到第5代,前4代已发射了222颗卫星。

深空探测

人类进入太空的前奏是对空间进行广泛的探测,采用的手段就是空间探测器。空间探测很自然地是由近及远进行的,从地球自己的卫星──月球开始,进一步便是本家族──太阳系的各个行星及其卫星,最后再飞出太阳系,深入到遥远的恒星际空间进行探测。

月球探测  伽利略是第一位用望远镜看到崎岖不平月面的科学家。到19世纪末,人类对月球向着地球的一面所拍摄的照片已达到1公里的分辨率:50年代后期,苏联和美国都制定了用无人探测器考察月球的计划。1959年苏联以拍摄月球背面图像为目标,先后发射了3个月球探测器。第一个探测器从月球一侧约5000公里处飞过,未发回信息,进入了太阳轨道;第二个命中月球视中心以北800公里处,在即将撞击月球表面的瞬间向地球发回关于月球附近不存在强磁场和辐射带的信息。这是第一个到达地球以外其他天体的航天器。第三个探测器从月球之南7900公里进入绕月飞行轨道,经过月球背面时拍摄到月球背面70%从未被人类见过的区域和30%可从地面看见的月面。探测器飞回地球时,轨道正处于地球北半球的上空,有利于苏联地球站跟踪和数据接收。探测器在回程中又将所拍摄的资料重复播送。地球站收到并整理出约30张关于月球背面的图像,月球背面的面貌第一次被揭开了。

1963~1976年是苏联实施月球考察计划的第二个阶段。在此期间苏联共发射21个“月球”号探测器(图7)。最重要的成果是:“月球”16、20和24号分别于1970年9月、1972年2月和1976年8月在月面软着陆并钻孔取样,将月球的土壤和岩石样品带回地球;“月球”17号和21号在1970年11月和1973年1月分别携带一辆重约1.8吨的月球车在月面软着陆,由地面遥控月球车在月面自动行驶考察。两辆月球车分别行驶了10.5和37公里。

世界航天史

美国早期的月球探测器是“先驱者”号探测器,从1958年开始发射。前3个都因未达到预定速度而失败,第4个虽然发射成功,但时间上已晚于苏联,且在离月球很远处飞过,未发回重要信息。此后,美国把对月球探测的第二个阶段计划与“阿波罗”载人登月计划(见“阿波罗”工程)结合起来,执行了“徘徊者”号探测器、“勘测者”号探测器和“月球轨道环行器”计划。

行星探测  太阳系的九个行星分为内行星和外行星。4个内行星是水星、金星、地球和火星,5个外行星是木星、土星、天王星、海王星和冥王星。行星探测可分为内行星探测和外行星探测两类。

内行星探测从60年代初开始。1961年 2月12日苏联发射第一个金星探测器。这个探测器在需时约 3个月的旅程中只飞行了15天便与地面中断了通信联系。在60年代,苏联多次发射金星探测器,但均无重要收获。美国在1962年8月26日发射“水手”2号金星探测器(见“水手”号探测器),探测器在距金星35000公里的地方掠过,取得了关于金星的某些资料。当探测器经过金星时,科学家测量它因金星引力而产生的轨道偏差,首次准确地计算出金星的质量。从70年代开始苏联和美国的金星探测进入第二个阶段。1971年,苏联“金星” 7号探测器(见“金星”号探测器)的着陆舱在金星表面软着陆成功,此后相继发射“金星” 8号至“金星”16号探测器,发回了一批金星全景遥测照片和测量数据。测得的金星表面温度高达 470±8°C,压力为9±0.15兆帕(约90±1.5大气压)。美国在 1978年金星大冲期间发射了“先驱者-金星”1号和 2号探测器(见“先驱者”号探测器),在金星表面软着陆成功,对金星进行了综合考察。

人类对火星上可能存在生命的问题一直怀有希望。苏联在1962~1973年间发射了7个“火星”号探测器,其中1个飞越火星,2个出了故障,2个软着陆失败,2个软着陆后不久通信中断。美国在1964~1975年间共发射 6个“水手”号探测器和2个“海盗”号探测器(图8)。前者拍摄了火星的照片,后者抛出着陆舱在火星表面软着陆(见彩图)。苏、美两国对火星探测的结果表明,在着陆点附近未发现地球类型的生命形式(见地外生命探索)。

世界航天史

世界航天史

人类第一次用逼近方式取得关于水星表面状态的信息是 1973年美国发射的“水手” 10号探测器在距水星690 公里处发回的。水星是太阳系内距太阳最近的行星。从地球上观察只能在它接近地平线处才有可能。但它这时的形象又因大气和涡流的遮拦而十分模糊。“水手”10号发回的水星照片十分清晰,可分辨约150米大小的物体。测得的数据表明水星表面很像月球,布满大大小小的环形山,有很稀薄的大气,大气压力小于2×10-11帕,昼夜温差极大,白天温度达700K,夜间冷到100K。

外行星探测是从70年代初开始的。它比内行星探测的距离远,探测器飞行时间长达数年,必须有大功率无线电发射机和大的发射天线才能使发回的信号在达到地球表面时仍有一定的强度。其次,在离太阳遥远的空间已不可能利用太阳电池,只能用核电源。1972年3月美国发射了第一个探测外行星的“先驱者”10号探测器。1973年12月,这个探测器飞近木星,向地球发回300张中等分辨率的木星照片,然后利用木星的引力场加速飞向土星,再利用土星的引力场加速飞行,折向海王星,1983年飞过海王星的轨道,预计到1986年将越过冥王星的平均轨道,成为脱离太阳系的第一个航天器。1973年4月发射的“先驱者”11号探测器在1974年12月经过木星,1979年9月在离土星34000公里处掠过,拍摄了土星的照片,发回有关土星光环成分的资料。1977年8月和9月,美国发射“旅行者”2号和1号探测器(见“旅行者”号探测器)。1979年以后,它们陆续发回木星和土星的照片,清楚地显示出木星的光环、极光和 3颗新卫星以及木星的大红斑结构和磁尾形状,土星的光环构造、新的土星卫星、奇异的电磁环境等信息(见彩图)。70~80年代的空间探测成果无论从航天技术水平,或是从空间天文观测成果来看,都是重大的历史性成就。

世界航天史

世界航天史

世界航天史

世界航天史

人进入太空

载人航天是航天技术发展的一个新阶段。实现载人航天需要解决的主要问题是:研制出高度可靠而推力又足够大的运载工具;获得关于空间飞行环境的足够信息,对人所能承受的极限环境条件作出正确的判断;研制出能确保航天员生活、工作和安全飞行的生命保障系统和救生系统;能对飞行中的航天员的器官功能和健康进行监测;研制出航天器的人工驾驶和自动控制系统;使地面与航天员之间保持可靠的不间断的通信联系;掌握航天器再入大气层和安全返回的技术。

第一个航天员  早在40年代末,人们就把一些生物装入探空火箭进行试验。50年代后期,出现了携带动物的人造卫星,对生命保障系统、回收技术、遥测、遥控、通信技术等进行了全面试验。科学家们对获得的空间环境数据加以处理后发现过去对微流星的危害估计偏高,存在辐射带的空间也是有限的,从而肯定了人进入太空的可行性。苏联在发射了5艘不载人的卫星式飞船后,于1961年4月12日用“东方”号运载火箭(见彩图)成功地发射了世界上第一艘载人飞船“东方”1号(见“东方”号飞船),使Ю.А.加加林成为世界上第一个进入太空的人,从而开辟了人类航天的道路。

世界航天史

登月  人踏上月球是载人航天活动的新高峰。美国为了加强航天活动,于1958年采取了一项重要措施,将航空咨询委员会改组为美国国家航空航天局,并作出两项具有战略意义的决定:一个是立即为载人的“水星”计划选调航天员;第二是优先发展巨大推力的F-1发动机。1961年 5月25日,美国总统J.F.肯尼迪向国会提出在60年代末将人送上月球的“阿波罗”工程。在国家航空航天局严格而科学的管理下,经过几十万人8年多的工作,1969年 7月20日由航天员N.A.阿姆斯特朗和E.E.奥尔德林驾驶的“阿波罗”11号飞船的登月舱降落在月球赤道附近的静海区。这是一次震动全球的壮举,也是世界航天史上具有重大历史意义的成就。此后,“阿波罗”12、14、15、16、17号相继登月成功,对月球进行了广泛的考察。“阿波罗”工程集中体现了现代科学技术的水平,推动了航天技术的迅速发展。

飞船空间对接  1975年苏、美两国的载人飞船在地球轨道上交会和对接并进行联合飞行,这是载人航天活动的一个重要事件。整个60年代,苏联和美国虽然在气象卫星信息交换、被动通信卫星试验以及生物医学等方面有过合作,但深度和广度十分有限。1969年,苏、美两国商定在载人航天方面进行一次有效的合作。由苏联的“联盟”号飞船和美国的“阿波罗”号飞船进行一次联合飞行。经过几年的努力,为实现飞船对接和联合飞行所需要解决的测距方法与交会系统、对接机构、通信与飞行控制、生命保障和舱内环境条件等问题都获得解决。1975年7月15日,苏联发射“联盟”19号飞船。飞船在第4和第17圈作了两次机动变轨,最后进入225公里高的圆形轨道。在“联盟”号飞船起飞后7小时30分,美国发射“阿波罗”18号飞船进入与“联盟”号飞船相同的轨道。两艘飞船的发射和入轨都很成功。在“阿波罗”号飞船飞行到29圈,“联盟”号飞船飞行到36圈时,两船开始对接并联合飞行2天(图9)。两国航天员经由过渡段进行了互访,共同表演科学试验,联合举行答记者问,完成了合作计划。

世界航天史

在空间建立基地

在空间建立适合人们长期生活和工作的基地既是航天先驱者的理想,也是进一步开发和利用太空的需要。第一步是建立可长期工作的航天站。到1984年年中,进入近地轨道的航天站有3种:美国的“天空实验室”、苏联的“礼炮”号航天站和欧洲空间局的“空间实验室”。

“天空实验室”美国国家航空航天局利用“阿波罗”工程节余的“土星” 5号运载火箭的末级,将它改造成为试验型航天站,即“天空实验室”。“天空实验室”于1973年5月14日发射进入435公里高的轨道。先后有3批共9名航天员登上“天空实验室”进行生物学、航天医学、太阳物理、天文观测、对地观测和工程技术试验,拍摄了约1000万平方公里地球表面的 4万多张照片(见彩图)。“天空实验室”取得的另一重大成果是观察到一次中等程度的太阳耀斑爆发的全过程,并进行了录像,这是研究太阳耀斑的极可贵的资料。根据原来的设计,“天空实验室”应在轨道上运行到80年代初,待航天飞机研制成功后由航天飞机将其回收,但由于1978~1979年间太阳黑子活动加剧,大气层略有扩张,致使“天空实验室”在轨道上的阻力增加,于1979年7月11日提前坠入大气层烧毁。

世界航天史

世界航天史

世界航天史

“礼炮”号航天站  苏联从60年代以来发射了 6艘“东方”号飞船和2艘“上升”号飞船,完成了第一阶段的载人航天任务。苏联根据这些航天实践得出结论,在轨道上建立可长时间工作的航天站,比每次携带一套电源、生命保障系统和通用设备的单个飞船更为经济有效。因此决定发展能为军用和民用较大规模科学试验服务的“礼炮”号航天站,并用“联盟”号飞船作为接送航天员的工具。同时研制专为“礼炮”号航天站运送物资的不回收的“进步”号飞船。苏联从1971年4月19日到1984年11月共发射7个“礼炮”号航天站,以实际应用为目标,进一步完善航天设备,并从事许多与科学研究、国民经济、军事有关的探测、侦察、试验活动。自1979年 9月29日“礼炮”6号航天站上天以来,苏联共进行33次与此有关的发射活动,先后有19批航天员到航天站上工作。“礼炮”6号航天站有两个对接舱口,借以进行不定期的加油、补给、轮换航天员。1982年4月19日苏联发射“礼炮”7号航天站,以“礼炮”7号航天站为中心的载人航天活动正在进行中。3名航天员在“礼炮”7号航天站上创造了持续飞行236天22小时50分的新纪录,完成了多项需要长期工作的科学研究课题,包括植物在太空环境下从播种、发芽、生长、开花到结果的全过程的研究。

“空间实验室”  70年代初,美国曾计划在航天飞机上装备一个能进行精密加工、制造高强度材料、提炼高纯度单晶体和某些生物制品的航天器。后因经费不足,遂与欧洲空间局达成协议,由西欧国家按照美国航天飞机货舱的尺寸和承载能力研制“空间实验室”。“空间实验室”由一个圆柱形增压舱和一个敞开的仪器舱组成。前者是航天员的生活和工作场所,装有生命保障系统、数据处理设备和小型专用仪器设备。1983年11月28日“空间实验室”1号由“哥伦比亚”号航天飞机运送入轨(图10)。联邦德国专家也参加了实验室的工作。“空间实验室”的研制成功为美国国家航空航天局提供了一个重要的航天器,也使西欧开始直接参加载人航天活动。

世界航天史

航天飞机出现

运载火箭将人造卫星、空间探测器、载人飞船、航天站等航天器送入轨道后,就被遗弃在太空直至坠入大气层焚毁,这是航天活动耗费巨大的一个重要原因。60年代各种航天器发射频繁,降低单位有效载荷的发射费用就显得日益重要,为了降低费用,提高效益,一些科学家提出了研制能多次使用的航天飞机的设想。美国、苏联、法国、日本、英国等国都曾对航天飞机的方案作过探索性研究工作。在这些国家中,美国最早开始研制航天飞机并将其投入商业性飞行(见美国航天飞机工程)。美国航天飞机的论证工作始于1969年。1972年 1月美国政府批准航天飞机为正式工程项目。最后确定的方案是整个飞行器由可回收重复使用的固体助推器、不回收的外贮箱和可多次使用的轨道器三个部分组成。方案要求能乘载7名航天员,但对乘员体质要求并不十分严格。航天飞机起飞时加速度不超过3g,正常降落时不大于1.5g。对于这样的过载环境,身体健康的人稍加训练就可以承受。1981~1982年10月,航天飞机进行研制性飞行试验。1982年11月11日,美国航天飞机首次进行商业性飞行,从近地轨道将两颗通信卫星送入地球静止轨道。截至1984年,又有“挑战者”号和“发现”号两架航天飞机投入使用。美国航天飞机先后飞行了14次,共将14颗卫星运送入轨,还从轨道上捕捉了三颗不能工作的卫星,其中一颗经修复后重新放入轨道,另外两颗被带回。地面(见彩图)“苏联研制的航天飞机也进入了试验阶段,到1984年年底,苏联航天飞机已作过多次研制性飞行试验。航天飞机兼有运载火箭、载人航天器和高性能飞机的多重特性。它提高了航天活动的经济效益,使航天技术的发展进入了一个更高的阶段。

世界航天史

世界航天史

世界航天史

世界航天史

世界航天史

世界航天史

世界航天史

世界航天史

人类最早产生太空飞行理想的年代已难以查证,但有效的航天活动只是近30年的事。在不到一代人的时间里,航天事业取得了巨大的成就,它极大地丰富了人类的知识宝库,典型地反映了当代科学技术发展的节奏,甚至正在改变现代文明社会的面貌。正是在这一领域,人们所要征服的对象──宇宙是无穷尽的,人类社会也必将从人类征服太空的活动中吸取不断前进的力量。

顶一下
(0)
0%
踩一下
(0)
0%
必看十大热文

请选择遇到的问题

观点错误
内容与标题不符
内容陈旧
内容质量差
内容不够全面
已收到你的问题反馈