一、测量重量的工具有哪些?
1、秤
秤亦作“称”。衡器。或将不等臂的衡量轻重的器具皆称为秤,或指以看秤星计被称物重量的提系杠秤,或单指秤杠。战国时已有不等臂衡器。
国内杆秤始于何时,尚无定论。出土的楚国王铜衡杆,上有十等分的刻度,推测是称量时作为在不同部位悬挂权和重物的标志,很可能是从等臂天平过渡到杆秤时出现的一种衡器。东汉以后演变为从秤星看重量的秤。
2、戥子
戥子学名戥秤,是一种宋代刘承硅(据传)发明的衡量轻重的器具。属于小型的杆秤,是旧时专门用来称量金、银、贵重药品和香料的精密衡器。因其用料考究,做工精细,技艺独特,也被当做一种品位非常高的收藏品。
3、衡器
衡器是用来测量物体的长度、容量和重量的器具,在中国统称为“度量衡”。中国古代衡器扎根于历史文化之中,其发展史本身就是一幅浓缩的古代社会的生活画卷。
4、称重仪表
称重仪表也叫称重显示控制仪表,是将称重传感器信号(或再通过重量变送器)转换为重量数字显示,并可对重量数据进行储存、统计、打印的电子设备,常用于工农业生产中的自动化配料,称重,以提高生产效率。
5、电子台秤
电子台秤是是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。
二、ug测量重量是哪个工具?
UG测量重量是通过计算物体的体积并结合物体的密度来计算的,不需要使用特定的工具来测量重量。因为重量是指物体所受到的重力大小,而UG软件主要用于三维建模和产品设计,一般不考虑物体所受到的重力大小。但是在进行材料计算或模拟物体受力的时候,需要涉及到重力的计算与分析。在这种情况下,UG可以通过建立模型并设置物体的密度来计算出物体的重量。因此,UG主要是通过计算物体的体积和密度来计算重量,而不需要使用特定的工具来测量。
三、载荷与重量换算?
每平方承重G要换算成荷载,则需要知道重力公式,也就是重力G=mg,其中m为质量,g为系数,并且g为为常数9.8N/kg,。如每平方承重50公斤,换算成载荷是:重力G=50x9.8=490N=0.49kN 也就是每平方承重50kg换算成荷载为0.49kN,也就是每平方承受的荷载大小为0.49kN。在设计中一般用kN作为常用单位。
四、常见的物体重量测量工具?
有:杆秤、台秤、电子秤、天平等。
这些工具用于测量物体的质量或重量,其精度和适用范围各有不同。例如,杆秤和台秤适用于日常生活和商业场合,而电子秤和天平则适用于科学实验和高精度测量。
五、船舶 GPS 可以测量水深吗?
人们如果想深入了解海洋、在海上开展科学实验,开发或保护海洋资源,都需要获得一个最基础的海洋信息——水深。地球上海洋的平均深度大约为3800米,其中最深处是太平洋马里亚纳海沟“挑战者深渊”,深度大约11000米。
那么,这11000米水深是如何测量出来的呢?
有人问,用激光可以吗?陆地上我们就常用激光测量物体间的距离。
抱歉,答案还是
因为包括激光在内的电磁波在水中传播时衰减非常快,传播几百米就没能量了,所以肯定无法用于11000米深海域探测。
又有人问,用“尺子”怎么样?我把绳子绑上重物放入水中,等重物沉到底后,通过测量绳子的长度获得水深。
再次抱歉,这个方法看似直观,实则……效率又低,测量结果误差又大,而且只有特殊制作的绳子才能身负重物沉到11000米水深还不断裂,反正也是
这也不可以那也不可以,到底怎么样才可以呢?
这个测量海洋深度的问题,当然早就有人思考过,并确实有几种方法是可行的,不然咱们怎么知道的大海有多深呢~
一种方法是布放深度计(或压力计)到海底进行测量。
不过这种方法布放回收过程需要很长时间,而且水深结果是根据压力和海水特性反演出来的,结果会有一定误差。因此,这种方法虽然空间分辨能力非常高,但探测效率(单位时间所探测的面积)非常低。
还有一种方法,是根据重力影响下不同深度的海平面高度不同这一特性,利用卫星遥感测量海平面高度进而反演水深的方法。
这种方法的探测效率非常高,但是探测结果的空间分辨能力较低,无法得到精确的海底地形数据。
第三种,就是目前最常用的声学方法。
因为声波在水中传播时衰减远小于电磁波,频率越低衰减越小,所以通过合理选择频率,可实现11000米深海域探测。
一开始,科学家们使用的是单波束测深仪,它安装在船底,工作时向船的正下方发射一束声波信号,声波到达海底反射回来再由单波束测深仪接收。结合声波在水中传播速度、发射到接收所用传播时间,就可以计算出海底深度。
单波束测深仪可以快速有效地测量海洋深度,但一次测量只能获得一个位置的水深结果,效率还是比较低。
为了进一步提高11000米海域的声学探测效率,满足不断提高的科研需求,科学家们搞出了一个叫“全海深多波束测深系统”的东西。
全海深多波束测深系统也是安装于船体,工作频率一般为12kHz,从外观上看是两条阵,第一条是发射阵,沿着船体龙骨方向安装,它发出的声波信号会形成一个“发射扇面”,“照射”到垂直船体龙骨方向的海底条带的各个位置。在“发射扇面”上,波束沿着龙骨方向张开的角度较小,为0.5至2度,当波束角度为1度时,发射阵的长度约为8米。
第二条是接收阵,垂直于船体龙骨的方向安装,用于接收从海底反射和散射回来的声波信号。利用声学信号处理方法,接收阵可以只接收来自特定方向的声波信号,形成定向的“接收扇面”。在“接收扇面”上,角度为1至2度的多个窄波束垂直龙骨方向回收,当波束角度为2度时,接收阵的阵长约为4米。
“接收扇面”与“发射扇面”相交方向“照射”到的海底就是被测区域,根据声波信号传播回来的方向与往返时间,可以计算出被测区域的水深和距离船体的水平位置。
多波束测深系统的接收阵可以同时接收成百上千个特定方向上的回波,也就是说,一次测量就可以获得成百上千个位置的水深。
因此,全海深多波束测深是目前既高效又准确的11000米海域(包括深海海域)水深测量方法,其空间分辨能力显著高于卫星遥感测量方法。
通常情况下,船一边向前航行,一边测量水深,这样一次又一次的测量结果拼接起来,就能够得到一片区域的水深图,也就是海底地形图。
而在实际测量中,全海深多波束测深系统必须面临的难题是波束稳定技术。
众所周知,大部分时间里海洋不会风平浪静。
海水中的声速约为1500米/秒,探测11000米海域时,全海深多波束一次测量过程(从开始发射声波到接收完最远端返回的声波)需要几十秒,在这段时间里船的姿态始终随着风浪变化,此时声波的发射方向和回波接收方向可能都不再是预设的方向,得到的水深结果就会存在误差,拼接起来的水深图可能会发生扭曲。
这时候就要放大招了!
通过预测船体的姿态,全海深多波束测深系统采取相应的补偿措施,无论船的姿态如何变化,最终发射和接收的声波都能稳定在预定的方向上,获得更加均匀的探测结果。
为了使声波条带尽可能与船航行方向垂直,发射时采用向不同方向分别发射多个声波扇面拼成整个声波条带的策略,此时各个扇面“照射”海底区域的中心的连线垂直于船行方向。
此外,为更好地实现11000米海域水深探测,全海深多波束测量还采取多种消除误差和偏差的措施,包括选择合理的发射信号,进行姿态、位置、声速偏差修正以及多普勒效应修正等。
在实现11000米深海域高效准确探测的同时,全海深多波束测深系统还具备最浅在20米深海域进行探测的能力,并利用声波探测海底地貌与水中目标,为深海海域探测提供更丰富的探测信息。
而且近期,以中科院声学所为核心的科研团队,经过十年的艰苦研制与技术攻关,成功研制出了我国首套具有自主知识产权的全海深多波束测深系统,并且已安装于科学考察船开展了6000多公里测线应用示范,使我国成为继挪威、德国和丹麦之后第四个研制出现代全海深多波束测深系统的国家!
作者:中国科学院声学研究所 海洋声学技术中心 王舒文 刘晓东
出品:科普中国 科普融合创作与传播项目
监制:中国科学院计算机网络信息中心
科普融合创作与传播项目是中国科普博览团队在做的科普中国子项目,欢迎投稿(原创科普),邮箱yddzptj@cnic.cn,稿费多,平台广,速来~
六、机械静态载荷测量法?
静态机械载荷试验机验证确定组件在不同安装角度下经受风、雪、或覆冰等静态、动态载荷的能力。广泛用于检测光伏组件之耐压强度试验,采用动态持压技术,模拟载荷试验,以了解产品在载荷状态下之抗压能力。
目前国内外主要通过实地现场测试、吸盘、水压、沙袋、气囊等方式开展光伏组件机械载荷检测技术研究:
1.采用多个吸盘在光伏组件表面进行动态机械载荷试验。组件固定不动,通过调节吸盘和组件表面中间的空气压力的正负实现对组件向下的压力或向上的吸力。每个吸盘通过电机单独控制,系统设计方案复杂,操作简单,但造价比较高,目前市场上一台动态机械载荷试验机大约需要40万~60万元。且不同吸盘组合间有可能存在压力不均的情况。
2.采用水压作为压力源。水袋加压是利用水的重力向光伏组件施加均匀的压力。由于方式施压物水袋的重量大,水袋漏水后对试验样品、试验室环境等影响较大等原因,应用较少,而且因为重力垂直向下的特性,水压法也不适合实现动态机械载荷试验。
七、一颗黄豆的重量用什么工具测量?
如果是普通的称,可能称不出来,这就需要称多粒,再换算一下就可以了。当然也可以选择精度很高的天平,比如我当年上学在实验室用的电子天平或者分析天平。
八、锻造轮毂的载荷重量?
18寸的锻造轮毂重量一般是8.5-9kg。
一颗轮毂的参数一般包括:直径,宽度,PCD与孔位,偏距,中心孔。轮毂尺寸其实就是轮毂的直径,一般我们说的15寸轮毂,16寸轮毂,就是指轮毂直径,单位是英寸。轮毂的宽度就是俗称的J值。轮毂的宽度会直接影响轮胎的选择。同样尺寸的轮胎,J值不同,选择的轮胎扁平比和宽度也就不同
九、任务载荷重量是什么?
大多无人机系统便升空执行任务,通常需要搭载任务载荷。任务载荷一般与侦察、武器投射、通信、遥感或货物有关。无人机的设计通常围绕所应用的任务载荷进行。有些无人机可携带多种任务载荷。任务载荷的大小和重量是无人机设计时最重要的考虑因素。大多数小型商用无人机要求任务载荷的重量不超过5磅。有部分小型无人机制造商采用可快速拆卸和替换的任务载荷。
就侦察任务和遥感任务而言,传感器任务载荷根据不同任务可采用许多不同形式,包括光电摄像机、红外摄像机、合成口径雷达、激光测距仪等。光学传感器组件即可永久安装在无人机上,以便传感器操作员获得固定的视角,也可安装在万向节或转塔上。万向节或转塔安装系统使传感器能够在预定范围内转动,通常绕两个轴转动。万向节或转塔即可通过自动驾驶系统,也可以通过独立的接收机来接受输出信号。有些万向节还装有震动隔离装置,可降低飞度。震动隔离方法有两种,一种是采用弹性/橡胶安装座,另一种是采用电子陀螺仪稳定系统。
光电
光电摄像机通过电子设备的转动、变焦和聚焦来成像,在可见光谱工作,所生成的图像形式包括全活动视频、静止图片或二者的合成。大多数小型无人机的光电摄像机采用窄视场到中视场镜头。大型无人机的摄像机还可使用宽视场或超宽视场传感器。光电传感器可执行多种任务,还可与其他不同类型的传感器结合使用,以生成合成图像。关电摄像机大多在昼间使用,以便大可能提高视频质量。
红外
红外摄像机在红外电磁频谱范围内工作。红外传感器也称为前视红外传感器,利用红外或热辐射成像。无人机采用的红外摄像机分为两类,即冷却式和非冷却式。现代冷却式摄像机由低温制冷器制冷,可降低传感器温度到低温区域。这种系统可利用热对比度较高的中波红外波段工作。冷却式摄像机的探头通常装在真空密封盒内,需要额外功率进行冷却。总而言之,冷却式摄像机生产图像质量比非冷却式摄像机的质量要高。
非冷却式摄像机传感器的工作温度与工作环境温度持平或略低于环境温度,当受到探测到的红外辐射加热时,通过所产生的电阻、电压或电流的变化工作。非冷却式传感器的设计工作波段为7~14纳米的长波红外波段。在此波段上,地面温度目标辐射的红外能量最大。
十、重量 如何测量?
1.用直尺测出弹簧的原长L0.
2.用弹簧挂住那个已知重量的砝码,测出弹簧的长度L1。
3.算出弹簧的弹性系数K=(L1-L0)/MG
4.取下砝码,把位置重量的物体挂在弹簧上,用直尺测出弹簧长度L3。
5.MG=k(L3-L0),算出M。
重量即是重力,是地球对物体的吸引产生的。方向竖直向下。重量与质量成正比。测量工具:测力计(弹簧秤)
质量是物体所含物质的多少,与物体的位置体积状态温度等无关,测量工具:天平等(标量)
- 相关评论
- 我要评论
-