返回首页

剪应力切应力拉应力压应力?

245 2024-10-09 09:10 admin

一、剪应力切应力拉应力压应力?

剪应力τ(又称为切应力)。在圆截面受扭构件中,剪应力(又称切应力)τ由扭矩T产生。

拉应力σ是正应力。在轴心受拉构件的截面中,均布拉应力σ由轴心拉力产生。

压应力σ是正应力,在轴心受压构件的截面中,均布压应力σ由轴心压力产生。

受弯构件截面中的正应力σ呈三角形分布,有拉应力,也有压应力。σ由弯矩M产生。

二、正应力切应力弯曲应力的区别?

正应力是指垂直于截面的应力分量(或法向应力,用σ表示;相切于截面的应力分量称为剪应力或切应力,用τ表示。

切应力物理学术语,截面上与截面相切的应力称为剪应力或切应力,与正应力相对。

弯曲应力是指法向应力的变化,分量沿厚度上的变化可以是线性的,也可是非线性的。其最大值发生在壁厚的表面处,设计时一般取最大值进行强度校核。

三、等效应力,总应力和mises应力的区别?

等效应力、总应力和Mises应力是力学中的三个概念,它们的主要区别如下:

1. 等效应力

等效应力也称为von Mises应力,是由 Max von Mises 在1913年提出的一种衡量材料受到多向应力作用的总和的方法。等效应力主要考虑各个方向上的应力大小以及各种应力之间的相互影响,通常用于研究材料的承压、弯曲或剪切等问题。在三维空间中,等效应力的表达式为:

σ_eq = ((σ_1 - σ_2)^2 + (σ_2 - σ_3)^2 + (σ_3 - σ_1)^2 + 3τ^2)^0.5

其中,σ_1,σ_2和σ_3分别表示材料在三个方向上的主应力,τ表示剪切应力,等效应力的单位通常为压力单位(比如帕斯卡Pa)。

2. 总应力

总应力是指材料受到的所有外力和内力(包括正应力和剪切应力)之和。通常情况下,总应力分为三种:轴向应力、横向应力和剪切应力。轴向应力是指作用于垂直于截面的力,横向应力是指作用于平行于截面而垂直于轴的力,剪切应力是受到内部剪切力的作用形成的应力。

3. Mises应力

Mises应力也被称为偏差应力,是一种考虑应力状态时的一种方法。和等效应力类似,Mises应力也是一种考虑各个方向上的应力影响的综合应力。在三维空间中,Mises应力的表达式为:

σ_m = (σ_1^2 + σ_2^2 + σ_3^2 -σ_1σ_2 -σ_1σ_3 -σ_2σ_3)^0.5

其中,σ_1,σ_2和σ_3分别表示材料在三个方向上的主应力,Mises应力的单位通常为压力单位。

总而言之,等效应力、总应力和Mises应力都是衡量材料应力情况的方式,但其具体计算方式、考虑因素和应用场合存在差异。

四、什么是热应力?怎么降低对船舶机械设备的危害?

热应力:零件各部分受热温度不同,产生的变形不同。材料内部一部分金属对另一部分金属变形的约束或牵制产生热应力。零件内外表面的温度不同也会产生热应力。

根据热应力与时间的关系分为定常热应力和不定常热应力。定常热应力是指不随时间变化的热应力。不定常热应力是指随时间变化的热应力。

根据热应力的频率分为高频热应力与低频热应力。

降低危害的方法:

(1)尽可能地减少甚至消除零件上的应力集中和应变集中。

(2)提高材料的高温强度。

(3)提高材料的塑形。

(4)降低材料的热膨胀系数。

五、应力的循环特征和应力特点?

中文名

循环特性

概念

最小应力与最大应力的比值

相关

r=σmin、σmax

表示

用r表示,量纲是1

基本内容

应力循环中最小应力与最大应力的比值,称为循环特性(或称循环特征,应力比),用r表示,量纲是1。

即r=σmin/σmax

循环特性r作为表示一个应力循环中应力变化的特性与程度,是研究交变应力时的重要参数。

当循环特性r=-1时称为对称循环,其余各种情况统称为非对称循环,当r=0(或r=-∽)这种非对称循环又称为脉动循环。静应力可视为交变应力的特殊情况。非对称循环可以看做是静应力与对称循环的叠加。

对称循环是交变应力中最危险的一种工况。

六、静应力与变应力的区别?

静应力:零件在工作过程中由外因(受力、温度变化等)作用而产生的不变化的应力。

变应力是随时间变化的应力称为变应力,绝大多数机械零件都是处于变应力状态下工作的,变应力由变载荷产生,也可能由静载荷产生。随时间作周期性变化,而变化幅度保持常数的变应力,如气门弹簧上的应力,称为稳定性循环变应力。若变化幅度也是按一定规律周期性变化,则称为不稳定循环变应力。

七、正应力和切应力的公式?

计算力要同时考虑力和面积的。力Fa=F▪cosa,面积Aa=A/cosa,所以σa=σcos2a。ta=σ▪sina▪cosa。在45°切应力最大,正应力为0。

八、热应力的热应力的相关影响?

残余热应力是指工件经热处理后最终残存下来的应力,对工件的形状,尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。

但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变害为利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。

钢的残余热应力

工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。

这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。

实践证明,任何工件在热处理过程中,只要有相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。

这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。

残余热应力对淬火裂纹的影响

存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。

淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。

就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的情况下,截面尺寸越大的工件,虽然实际冷却速度更缓,开裂的危险性却反而愈大。这一切都是由于这类钢的热应力随尺寸的增大实际冷却速度减慢,热应力减小,组织应力随尺寸的增大而增加,最后形成以组织应力为主的拉应力作用在工件表面的作用特点造成的。并与冷却愈慢应力愈小的传统观念大相径庭。对这类钢件而言,在正常条件下淬火的高淬透性钢件中只能形成纵裂。

避免淬裂的可有原则是设法尽量减小截面内外马氏体转变的不等时性。仅仅实行马氏体转变区内的缓冷却不足以预防纵裂的形成。一般情况下只能产生在非淬透性件中的弧裂,虽以整体快速冷却为必要的形成条件,可是它的真正形成原因,却不在快速冷却(包括马氏体转变区内)本身,而是淬火件局部位置(由几何结构决定),在高温临界温度区内的冷却速度显著减缓,因而没有淬硬所致。产生在大型非淬透性件中的横断和纵劈,是由以热应力为主要成份的残余拉应力作用在淬火件中心,而在淬火件末淬硬的截面中心处,首先形成裂纹并由内往外扩展而造成的。

为了避免这类裂纹产生,往往使用水--油双液淬火工艺。在此工艺中实施高温段内的快速冷却,目的仅仅在于确保外层金属得到马氏体组织;而从内应力的角度来看,这时快冷有害无益。其次,冷却后期缓冷的目的,主要不是为了降低马氏体相变的膨胀速度和组织应力值,而在于尽量减小截面温差和截面中心部位金属的收缩速度,从而达到减小应力值和最终抑制淬裂的目的。

九、剪应力和切应力的区别?

区别:

1、从概念上来说,剪力是内力,是截面上分布力系合力的切向分量,而切应力是应力,一个是力,一个是应力。

2、剪力是力,单位可用kN。剪应力是应力,是单位面积上的剪力,单位可用kN/m2。

3、剪力是建筑物中的竖向承重构件主要由墙体承担时,这种墙体既承担水平构件传来的竖向荷载,同时承担风力或地震作用传来的水平地震作用。剪力墙即由此而得名(抗震规范定名为抗震墙)。 切应力是在液体层流中相对移动的各层之间产生的内摩擦力的方向一般是沿液层面(指液体流动时,流向视为一个倒圆柱时,该圆柱的横截面)的切线,流动时液体的变形是这种力所引起的,因此叫做切变力(又叫剪切力),单位面积上的切变力与单位面积之比叫做切应变力

十、压应力和切应力的区别?

压应力和切应力是两种不同的应力,它们的作用效果和产生方式都有所不同。

压应力是指引起材料压缩变形所需要的力。它通常垂直于材料表面,施加在材料表面上一个垂直向外的力,导致材料压缩变形。例如,在压缩弹簧或拉伸物体时,压缩物体内部就存在压应力。

切应力是指引起材料剪切变形的力。它通常垂直于材料表面,施加在材料表面上一个平行于表面的力,导致材料发生剪切变形。例如,在拉伸弹簧时,弹簧内部的切应力就是指弹簧内部的相互作用力。

因此,压应力和切应力的区别在于它们的作用方式和产生的应力类型不同。在实际应用中,需要根据具体工况和材料特性选择合适的应力类型进行设计和分析。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片
上一篇:返回栏目
下一篇:cba名宿?