1. 电力传动优点
交直交电力传动机车是指通过交流电网供电,由整流器整流为直流,再逆变为交流,从而驱动交流电动机的机车。通过大功率IGBT把从接触网上取下的单相25kV交流电转换为直流电,然后通过变换,转变为交流电,从而对牵引电机实施控制。使用这种方式的机车功率因数高,高次谐波少,对电网污染少,现在的铁路用车多采用这种供电控制方式,比较典型的用CRH动车组,HXD系列电力机车等,都采用了这项技术。
2. 电力传动优点与缺点
就业前景:
电力电子与电力传动技术应用范围极其广泛,在各级工业、交通运输、电力系统、通信系统、计算机系统、新能源系统以及家电产品等国民经济和人民生活的各个领域都有重要的应用。电气传动技术也正在向智能化迈进,具有巨大的研究价值和广泛的应用前景,从而也为广大毕业生提供了源源不断的就业机会。
就业去向:
一般来说,电力电子与电力传动方向的毕业生适合去私营或国营高新技术企业(如海信、富士康、爱默生、ABB、微软)、军工企业、航天企业或各省市电力公司、电力设计院等,而电机、高压、电力系统及电工理论等强电专业或者相关电力专业的毕业生适合去研究所、电厂或者电网公司
3. 电力传动优点缺点
传动装置是指把动力源的运动和动力传递给执行机构的装置,介于动力源和执行机构之间,可以改变运动速度,运动方式和力或转矩的大小。
任何一部完整的机器都由动力部分、传动装置和工作机构组成,能量从动力部分经过传动装置传递到工作机构。根据工作介质的不同,传动装置可分为四大类:机械传动、电力传动、气体传动和液体传动。
(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
4. 电传动的优势
EDS与wds优缺点
1检测效率
能谱仪中锂漂移硅探测器对X射线发射源所张的立体角显著大于波谱仪,所以前者可以接受到更多的X射线;其次波谱仪因分光晶体衍射而造成部分X射线强度损失,因此能谱仪的检测效率较高。
2空间分析能力
能谱仪因检测效率高可在较小的电子束流下工作,使束斑直径减小,空间分析能力提高。目前,在分析电镜中的微束操作方式下能谱仪分析的最小微区已经达到毫微米的数量级,而波谱仪的空间分辨率仅处于微米数量级。
3能量分辨本领
能谱仪的最佳能量分辨本领为149eV,波谱仪的能量分辨本领为0.5nm,相当于5-10eV,可见波谱仪的分辨本领比能谱仪高一个数量级。
4分析速度
能谱仪可在同一时间内对分析点内的所有X射线光子的能量进行检测和计数,仅需几分钟时间可得到全谱定性分析结果;而波谱仪只能逐个测定每一元素的特征波长,一次全分析往往需要几个小时。
5分析元素的范围
波谱仪可以测量铍(Be)-铀(U)之间的所有元素,而能谱仪中Si(Li)检测器的铍窗口吸收超轻元素的X射线,只能分析纳(Na)以上的元素。
6可靠性
能谱仪结构简单,没有机械传动部分,数据的稳定性和重现性较好。但波谱仪的定量分析误差(1-5%)远小于能谱仪的定量分析误差(2-10%)。
7样品要求
波谱仪在检测时要求样品表面平整,以满足聚焦条件。能谱仪对样品表面没有特殊要求,适合于粗糙表面的成分分析。根据上述分析,能谱仪和波谱一各有特点,彼此不能取代。近年来,常将二者与扫描电境结合为一体,实质在一台仪器上实现快速地进行材料组织结构成分等资料的分析。
5. 电力传动的优点
电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。
它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。
6. 电力传动系统的缺点有什么
优点:
1,与机械传动比较,液压传动具有以下主要优点:
(1)由于一般采用油液作为传动介质,因此液压元件具有良好的润滑条件;工作液体可以用管路输送到任何位置,允许液压执行元件和液压泵保持一定距离;液压传动能方便地将原动机的旋转运动变为直线运动。这些特点十分适合各种工程机械、采矿设备的需要,其典型应用实例就是煤矿井下使用的单体液压支柱和液压支架。
(2)可以在运行过程中实现大范围的无级调速,其传动比可高达1:1 000,且调速性能不受功率大小的限制。
(3)易于实现载荷控制、速度控制和方向控制,可以进行集中控制、遥控和实现自动控制。
(4)液压传动可以实现无间隙传动,因此传动平稳,操作省力,反应快,并能高速启动和频繁换向。
(5)液压元件都是标准化、系列化和通用化产品,便于设计、制造和推广应用。
2,与电力传动相比,液压传动的主要优点有以下几点:
(1)质量小,体积小。这是由于电动机受到磁饱和的限制,其单位面积上的切向力与液压机械所能承受的液压相差数十倍。
(2)运动惯性小,响应速度快。液压马达的力矩惯量比(即驱动力矩与转动惯量之比)较电动机大得多,故其加速性能好。例如,加速一台中等功率的电动机通常需要一秒至几秒钟,而加速同样功率的液压马达只需要0.1 s左右。这种良好的动态特性,对液压控制系统更有其重要意义。
(3)低速液压马达的低速稳定性要比电动机好得多。
(4)液压传动的应用,可以简化机器设备的电气系统。这对于具有爆炸危险的煤矿井下工作大有好处。
缺点:
(1)在传动过程中,由于能量需要经过两次转换,存在压力损失、容积损失和机械摩擦损失,因此总效率通常仅为0.75~0.8。
(2)传动系统的工作性能和效率受温度的影响较大,一般的液压传动,在高温或低温环境下工作,存在一定困难。
(3)液体具有一定的可压缩性,配合表面也不可避免地有泄漏存在,因此液压传动无法保证严格的传动比。
(4)工作液体对污染很敏感,污染后的工作液体对液压元件的危害很大,因此液压系统的故障比较难查找,对操作、维修人员的技术水平有较高要求。
(5)液压元件的制造精度、表面粗糙度以及材料的材质和热处理要求都比较高,因而其成本较高。
总的说来,液压传动的优点是主要的。它的某些缺点随着生产技术的发展,正在逐步得到克服。如果进一步吸取其他传动方式的优点,采用电 液、气,液等联合传动,更能充分发挥其特点。
7. 电力传动有哪些重要作用
现在电力电子的应用范围很广:例如电力系统中的应用、新能源领域、电解电镀电源等等就业范围还是比较宽泛的!但是从待遇上看的话 跟系统还是有点区别的。
8. 电力传动优点和缺点
四象限整流器优点是将交流电变换成直流电的一种新型整流器。由交流侧的线路电抗器、电力电子器件与二极管反并联组成的单相桥式整流电路以及直流侧的支撑电容、电容与电感二次谐波滤波电路构成。
每个桥臂电力电子器件的开关可采用三角形载波与正弦形调制波的交点来加以控制。
通常,四象限脉冲整流器后接逆变器-异步电动机,用于交-直-交流传动电力机车,适合于经常需要牵引