1. 船舶主机自动停车的主要原因
海事事故的发生确实是一种小概率事件。和陆地汽车与道路相比,或者和空中飞机与天空航线相比,环境不同是一个因素,最主要因素是速度与汽车,与飞机比较慢了很多,所以水上航行安全系数大,而且船舶停车,倒车,调头也很容易,一部分港口进出港航行还有引航员强制引航。
2. 船舶主机停车是什么意思
大雾天气船舶备车是指机舱再启动一台辅机。在大雾天气船舶航行时,由于能见度很低,船尾看不见船头,只能靠雷达来识别其他船舶。
备车是为了在紧急情况下,船舶能够快速的停车,或者是采取紧急措施倒车等,如果不备车采取紧急措施时,有可能导致船舶主机熄火。
3. 船舶主机自动停车故障有哪些
1、锚要起作用,最基本的条件是在海底等钩住东西。 如果锚链不够长,锚不会起作用。 如果海底是平坦的,或者是锚钩住的东西不是固定的,或者是钩的不太牢,如果是风平浪静还可以,一但海浪过大,造成锚钩不住东西,会使锚失去其作用,这叫“走锚”,船在抛锚期间,出现走锚,是非常危险的,因为船在抛锚的时候一般主机都停了,如果立即开船,需要时间,没有动力的船四处漂是非常危险的。所以,才有了锚地这个概念,锚地,言外之意,海底下比较粗糙,另外,要能避风。
2、锚链的重量对于船来说是可以忽略不计的,那点摩擦力,不会起多大作用的。 另外,如果你注意一下,一般来说,抛锚时的船,锚链都是笔直的,你认为这个时候锚链会有什么摩擦力吗? 如果你在海边,会发现有很多的小渔船,她们的锚链是粗绳子。
3、在船上面看,锚链是直的,但是在水下 有一段是和海床接近于平行(其实是贴着海底的)的 锚提供抓力,而后通过锚链传递给船舶 借此抵抗海流、风浪的外载荷对于定位的影响 之所以有一段是贴着海底的 是要考虑到受力的影响 想想看,一个锚,锚链直挺挺的一拉就容易走锚 而有一段贴着海底,可以提供一个裕度 在一定范围内是可以的。 锚的重量是不大,但是多大的船用多大的锚是有规定的 这就是由于锚可以产生的抓力以及自身惯性力的因素 锚链摩擦力也是有作用的 总的说来在深海如遇到大风浪,基本就只有看老天页的意思了。 转一个资料 锚是确保船舶安全的一种不可缺少的设备,船锚主要有锚冠。销轴、锚爪、锚柄、锚杆(也叫横杆或稳定杆)及锚卸扣等组成。 锚的抛投方式 船舶抛锚停泊是常用停泊方法。其过程大致是:船上以锚链或锚索连接的锚抛入水中着地,并使其啮入土中,锚产生的抓力与水底固结起来,把船舶牢固地系留在预定的位置,根据不同的水域、气象条件和作业要求、锚的抛投方法有所不同,常用的方式有首抛锚、尾抛锚及首尾抛锚。
4. 船舶主机自动停车的主要原因有哪些
正常关机停机不倒电
柴油发电机关机操作有两步:
1、把启动钥匙转到初始位置,机组停机。
2、发电机组在用钥匙不能关机或有紧急状况下按紧急停机按钮。(紧急停机按钮位于静音箱外部上方,一个红色按钮) 柴油发电机组是以柴油机为原动机,拖动同步发电机发电的一种电源设备。是一种起动迅速、操作维修方便、投资少、对环境的适应性能较强的发电装置。
5. 船舶主机自动停车的主要原因是
主机安保系统包括 超速信号,公共故障降速,公共故障停车,紧急停车。 如果报警板上的超速信号指示灯亮,说明主机处于超负荷的运行状态,如果主机负荷控制系统正常,指示灯过几秒会熄灭,如果一直不熄灭,那怎么去处理呀? 螺旋桨是FPP(我知道螺旋桨如果是CPP直接调节螺距就可以了) 也许有的人回说主机停机,报警板上超速停机指示灯是熄灭状态,所以不能让主机停机。
6. 船舶主机不能启动的原因
1.
船外机无动力 致因:有水生植物或其它异物缠入齿轮箱 解决措施 :去除异物并清洁水下装置
2.
当使用紧急拉索起动船外机时,防挂档起动保护装置不工作。应确保遥控杆位于空档位置。
3.
火花塞的检查
火花塞呈白色:劣质的燃油混合油,喷嘴堵塞,漏气,温度低,错误设定等,需更换高热值火花塞。
火花塞呈黑色:电气故障,混合比过高,怠速转速过高,点火系统不良,温度高等
7. 船舶主机紧急停车原理
木船原来停泊的地方叫泊位 泊位原来是航海的一个专用术语,是指港区内能停靠船舶的位置,叫做“泊位”,后来人们以此作借喻,扩大范围使用,如停放车辆叫“泊车”,把能停放车的位置也称作“泊位”。因为在重要交通要道、城市街道、公共场所等地是不能乱停放车辆的,多数要设停车场或指定一个位置作停放各种车辆之用,所以“泊位”也就应运而生。
8. 船舶主机突然停车
有的。因为船是靠螺旋桨推进的,所以比较常见的是通过可调螺距螺旋桨(CPP: Controllable Pitch Propeller)来实现这个功能。CPP(简称可调桨或调距桨)通过设置于桨毂中的操纵机构使桨叶能够相对于桨毂转动调节螺距的螺旋桨,它是通过转动桨叶来改变螺距,从而改变船舶航速或正车、倒车,调距桨装置由桨叶、桨毂机构、轴系(艉轴、艉管、中间轴等)、配油器、液压系统和电子遥控系统等几大部件或系统组成。调距桨结构形式可以分为毂内油缸式和推拉杆式,毂内油缸式CPP其伺服油缸布置在桨毂内部,而推拉杆式CPP其伺服油缸布置在轴系上,前者一般用于大马力船舶,但油缸维修不方便,后者一般用于小马力船舶,油缸维修方便。
可以在驾驶室、集控室、机旁控制CPP。在驾驶室操纵控制杆,电液伺服控制系统通过配油机构,将来自液压站的高压油输入到位于螺旋桨桨毂中的伺服油缸,并通过转叶机构,驱动桨叶,在全正车和全倒车范围内,无级调节螺距角。对于任一规定的螺距角,由主机驱动的以某一转速运转的螺旋桨将吸收的扭矩转化为推船前进的力或拉船倒退的力。
可调螺距螺旋桨与定距桨相比具有以下优点:
调距桨能够在不改变螺旋桨和主机转向的情况下,仅用改变螺距的方法得到从最大正值到最大负值的各种推力值,既可以省去换向装置,又可缩短船舶换向航行的时间。
对于多工况船舶,可以在不同航行工况下充分吸收主机的功率,利用无级变速,如若螺旋桨与主机处于联合控制模式下即同时改变主机转速和螺距比并使之匹配适当,可以使船舶在单位时间内消耗的燃料最少。
可以使船舶微速前进,如海洋调查船、布缆船、扫雷舰等工程船和军用辅助船,要求船舶能够微速稳定航行,利用调距桨可以实现。
改善船舶操纵性能。装有调距桨的船舶可以提高靠离码头、改变航向、紧急停车或倒车、避免碰撞的机动性能。使用调距桨的船舶停船时间大约比定距桨减少1/3,滑行距离缩短一半,这对于改善船舶操纵性能十分重要。
在部分螺旋桨工作状态下,用置桨叶于顺水位的方法可使螺旋桨所受阻力减少。
调距桨具有诸多优点,但是同时也有自身的缺点:如毂径比大,螺旋桨效率降低;桨叶易产生空泡等;可调桨构造复杂,造价昂贵;维护技术要求高等。
广泛采用调距桨的船型有:拖船、渔船、工程船(布缆船、挖泥船等)、调查船、科学考察船、成品油船、化学品船、渡船、滚装船、破冰船等。
可调桨典型轴系配置一般包括:主机(M.E.)、高弹性联轴器、齿轮箱(G.B.)、CPP轴系、螺旋桨等。
主机:有高速机、中速机和低速机,一般工程船CPP优先配备中速机。国内船用柴油机厂家有宁动、广柴、陕柴、镇柴、淄柴、河柴、安庆大发、玉柴、潍柴......,都是引进国外技术,授权贴牌生产,不具备独立研发能力,与国外柴油机厂家如曼恩、瓦锡兰、卡特彼勒、康明斯、马克、大发......技术实力差距较大。
齿轮箱:中速机额定转速一般500~1000rpm,而桨的转速一般~200rpm,所以需要设置减速齿轮箱。国内船用齿轮箱厂家主要有,杭齿、重齿、南高齿、杭州发达等,国内齿轮箱技术已经发展比较成熟,达到了技术独立研发的能力,能够基本满足船舶推进系统要求,近年来随着技术的进步,主推进系统的双机并车齿轮箱也已经开发出来了。一般CPP配备的齿轮箱会带有PTO(Power Take Out),如果是一个PTO,此PTO一般用于带轴带发电机,此轴发发出的电可以供船上艏(艉)侧推用电;如果齿轮箱带有两个PTO,另一个PTO一般带消防泵。齿轮箱输出轴设置推力轴承,用于承受螺旋桨的推力,将螺旋桨的推力传递给船体,此推力轴承可以是滑动轴承也可以是滚动轴承。有些船上齿轮箱与轴发部位设置PTI(Power Take In),即当主机有严重问题无法工作时,齿轮箱将主机脱开后,此轴发逆向工作驱动螺旋桨运转。
高弹性联轴器:主机和齿轮箱之间通过高弹性联轴器(简称高弹)连接,高弹只传递扭力,不传递轴向推力,可以减轻主机振动对齿轮箱的影响,还可以补偿主机和齿轮箱安装时的径向误差。高弹与主机输出轴、高弹与齿轮箱输入轴之间通过法兰连接。齿轮箱PTO与轴发或消防泵也用高弹连接。目前使用最多的、被大部分船东认可的高弹产品是德国伏尔康高弹,在无锡有工厂,主要部件靠进口,国内组装。一般船舶轴系扭振强度计算书由高弹厂家负责计算。
CPP轴系:包括中间轴、桨轴、艉管、配油器、轴系附件(轴系接地装置、隔舱填料函、轴系测速装置、锁轴装置等)、液压联轴器、连接螺栓等。中间轴与齿轮箱、中间轴与中间轴之间连接的螺栓一般是铰制孔螺栓,可以采用液氮或干冰冷装也可以采用外力敲击的方法。中间轴与桨轴通过液压联轴器连接,液压联轴器是带有锥度的内外套(也有不带内套的),通过摩擦力抱紧轴,传递轴向推力和扭力,分为套筒式和法兰式,安装拆卸方便,且可以多次反复拆装。
9. 船舶主机应急停车怎么操作
这段时间是没有定数的,要看由当时情况下船舶的速度、装载情况、水流情况来决定。
当按下应急停车按钮后,柴油机供油电磁阀失电,切断柴油机的燃油供油,曲轴及艉轴在惯性和水涡轮的作用下会继续运动一段时间,在这段时间内一切只能听天由命了。
通常情况下,柴油机的应急按钮是严禁按下的,只有在柴油机运行时突发危及柴油机自身安全的事故时、同时柴油机的操纵手柄停车不起作用时,才会使用这个按钮。
除柴油机自身发生故障外,要紧急停止正常运行的柴油机的最好方法就是直接拉车钟到倒车的位置(可以在停车位置停顿一下),再拉回油门杆放到启动位置。等柴油机换向完成后,柴油机的控制系统会自动进气刹车(无论是老式的纯气控操作系统还是目前使用最广泛的电控操作系统都能在极短的时间内自动做到这一点。对于目前最大的大型船舶低速柴油机,船检规范要求的是:从正车全速前进到倒车启动成功也不大于60秒)。当听到柴油机进气的声音后,拉油门至停车位置,确保柴油机不会倒车启动。
10. 船舶主机自动停车的主要原因是什么
船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。
另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。
以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。根据水翼原理,桨叶要受升力和阻力的作用,推动螺旋桨前进,即推动船艇前进。船艇运动会产生顶流和伴流。继续把船艇看成不动,则顶流以与艇速大小相等,方向相反的流速向螺旋桨流来,而伴流则以与艇速方向相同,流速为ur向螺旋桨流来。通过速度合成,我们可以得到与螺旋桨成攻角α,向桨叶流来的合水流。则桨叶受到合水流升力dL和阻力dD的作用,将升力和阻力分解,则得到平行和垂直艇首尾线的分力:
dT=dL•cosβ-dD•sinβ
dQ=dL•sinβ+dD•cosβ
dT使船艇前进称为推 力;dQ称为横向力,即桨叶的旋转阻力。
显然,攻角α和流入桨叶的水流合速度V合决定了T和Q的大小。通常螺旋桨转速越高,而航速越低,即攻角α较大时,T和Q也越大。
设艇速V不变,如伴流流速增加(合速度减小),则攻角增大,推力和阻力也大;如果螺旋桨转速增加(合速度增加),则攻角增大,推力和阻力也大。当船艇静止不动时,螺旋桨转动时,水流攻角很大,则推力和阻力可能达到很大的值。阻力过大,对主机工作不利。所以船艇在从静止开始用车时,不宜用高速;同理,船艇在前进中换倒车时或从后退中换正车时,都应经过停车阶段,让艇速下降后再行转换,而不宜直接转换。主要是防止出现大攻角,产生巨大的旋转阻力,造成主机超负荷。