一、热应力的热应力的相关影响?
残余热应力是指工件经热处理后最终残存下来的应力,对工件的形状,尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。
但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变害为利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。
钢的残余热应力
工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。
这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。
实践证明,任何工件在热处理过程中,只要有相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。
这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。
残余热应力对淬火裂纹的影响
存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。
淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。
就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的情况下,截面尺寸越大的工件,虽然实际冷却速度更缓,开裂的危险性却反而愈大。这一切都是由于这类钢的热应力随尺寸的增大实际冷却速度减慢,热应力减小,组织应力随尺寸的增大而增加,最后形成以组织应力为主的拉应力作用在工件表面的作用特点造成的。并与冷却愈慢应力愈小的传统观念大相径庭。对这类钢件而言,在正常条件下淬火的高淬透性钢件中只能形成纵裂。
避免淬裂的可有原则是设法尽量减小截面内外马氏体转变的不等时性。仅仅实行马氏体转变区内的缓冷却不足以预防纵裂的形成。一般情况下只能产生在非淬透性件中的弧裂,虽以整体快速冷却为必要的形成条件,可是它的真正形成原因,却不在快速冷却(包括马氏体转变区内)本身,而是淬火件局部位置(由几何结构决定),在高温临界温度区内的冷却速度显著减缓,因而没有淬硬所致。产生在大型非淬透性件中的横断和纵劈,是由以热应力为主要成份的残余拉应力作用在淬火件中心,而在淬火件末淬硬的截面中心处,首先形成裂纹并由内往外扩展而造成的。
为了避免这类裂纹产生,往往使用水--油双液淬火工艺。在此工艺中实施高温段内的快速冷却,目的仅仅在于确保外层金属得到马氏体组织;而从内应力的角度来看,这时快冷有害无益。其次,冷却后期缓冷的目的,主要不是为了降低马氏体相变的膨胀速度和组织应力值,而在于尽量减小截面温差和截面中心部位金属的收缩速度,从而达到减小应力值和最终抑制淬裂的目的。
二、什么是热应力?热应力大小如何计算?
构件因温度化不能自由伸缩而产生的应力,或部件本身温度不均匀使伸缩受制约而产生的应力,称为热应力。由于热应力是温度变化而产生的,所以也称温度应力或温差应力。
部件工作时,它的尺寸将因温度变化而伸缩。若部件的伸缩不受任何限制,温度变化只能使其变形,而不致产生应力。若部件不能自由伸缩,将会在其内部产生应力。
部件在受热或冷却时,若各部分温度不一致,变形将受制约。温度高的部分要膨胀伸长,温度低的部分则限制它的膨胀,结果在高温部位产生压应力。低温部位产生拉应力。锅炉在启、停过程中,出现的汽包内外壁温差,将会在汽包壁内产生热应力。热应力是由于温度变化是时变形受阻而产生,可根据应力与应变成正比的关系列出计算式:
三、涤纶热应力
涤纶热应力是指涤纶纤维在高温下受到的应力,由于涤纶的热稳定性较差,当遇到高温时,纤维会发生热收缩,从而引起应力的产生。
涤纶是一种合成纤维,具有高强度、耐磨损和耐化学腐蚀等优点,因此在纺织行业中得到广泛应用。然而,涤纶在高温环境下存在一定的问题,其中涤纶热应力是一个重要的考虑因素。
涤纶热应力的原因
涤纶热应力的产生与纤维结构和热收缩性质有关。涤纶纤维主要由聚对苯二甲酸乙二酯(PET)组成,这种聚合物具有线性结构。由于PET分子链之间的相互作用较强,当纤维受热时,分子链会发生热运动,导致链间相互作用减弱,纤维发生收缩。
另外,涤纶纤维中存在的缺陷、缩聚体和结晶度等因素也会影响热应力的产生。缺陷会导致纤维结晶度的不均匀性,从而引起纤维在高温下的不同程度热收缩,进而产生应力。而缩聚体则会导致纤维的热收缩性质发生改变。
涤纶热应力的影响
涤纶热应力的产生会对纤维的物理性能和外观造成一定的影响。主要表现在以下几个方面:
- 尺寸稳定性下降:涤纶在高温下的收缩会导致纤维尺寸的变化,降低了纤维的尺寸稳定性,从而影响纺织品的尺寸稳定性。
- 变形和翘曲现象:由于热应力的作用,涤纶纤维可能出现变形和翘曲现象,使纺织品失去平整性。
- 拉伸性能下降:涤纶在高温下容易发生断裂,拉伸性能下降,降低了纺织品的耐久性。
- 外观质量下降:涤纶纤维在高温下容易变脏、变黄,影响纺织品的外观质量。
- 使用寿命缩短:由于热应力的影响,涤纶纤维的使用寿命可能会减少,降低了纺织品的使用寿命。
涤纶热应力的控制
为了控制涤纶热应力的产生,可以采取以下措施:
- 优化纤维结构:通过改变涤纶纤维的分子结构和组成,调整纤维的热稳定性和热收缩性,减小热应力的产生。
- 改善纺纱工艺:控制纺纱过程中的温度和拉伸程度,减小纤维在纺纱过程中的应力集中,降低热应力的产生。
- 改进后整理工艺:在纺织品的整理过程中,采取适当的温度和拉伸条件,减小纤维在整理过程中的热应力。
- 添加热稳定剂:在涤纶纤维的生产过程中添加热稳定剂,提高纤维的热稳定性,减小热应力的产生。
通过以上措施的综合应用,可以有效控制涤纶热应力的产生,提高涤纶纤维的性能和纺织品的品质。
四、芯片热应力
芯片热应力及其对元器件可靠性的影响
芯片热应力是指芯片在工作过程中由于温度变化产生的内部应力。随着半导体行业的迅猛发展,芯片热应力成为了重要的研究方向,研究芯片热应力对元器件可靠性的影响对于提高芯片的性能和稳定性具有重要意义。
首先,我们需要了解芯片热应力的来源。芯片热应力主要源于温度变化引起的热膨胀差异,当芯片在工作过程中受到温度变化的影响时,芯片内部各个区域的温度变化不同,由此导致芯片内部产生应力。芯片热应力的大小取决于材料的热膨胀系数,芯片的尺寸、薄膜的结构等因素。
芯片热应力对元器件可靠性的影响主要体现在以下几个方面:
- 降低元器件寿命:芯片热应力会导致芯片内部的裂纹和位移,这些问题会逐渐积累并最终导致元器件寿命的降低。
- 导致连接失效:芯片热应力对元器件的连接可靠性有着重要的影响。在芯片热应力的作用下,连接点可能发生断裂,从而导致元器件之间的连接失效。
- 影响元器件功耗:芯片热应力会导致元器件内部的电阻发生变化,从而影响元器件的功耗。高热应力可能会导致功耗的不稳定性,影响芯片的正常工作。
- 降低元器件的性能:芯片热应力会引起元器件内部结构的变形,从而影响元器件的工作性能。例如,芯片内部的晶体管受到热应力的影响可能会出现漏电现象,影响芯片的工作效率。
芯片热应力的测试方法
为了评估芯片热应力对元器件可靠性的影响,研究人员需要运用一些测试方法进行实验。以下是几种常见的测试方法:
- 热膨胀系数测试:通过测量材料在不同温度下的线膨胀系数,可以计算出芯片热膨胀系数,进而了解芯片在工作过程中的热应力。
- 热冲击测试:热冲击测试是通过将芯片置于高温和低温的环境中进行循环加热和冷却,观察芯片在温度变化过程中的破裂和失效情况,评估芯片的可靠性。
- 应力测试:应力测试可以模拟芯片在工作过程中受到的热应力,通过检测芯片在应力作用下的变形和裂纹情况,评估芯片的可靠性。
降低芯片热应力的方法
为了提高芯片的可靠性,降低芯片热应力是至关重要的。以下是几种常见的降低芯片热应力的方法:
- 优化芯片设计和材料选择:通过优化芯片的结构设计和选择热膨胀系数较小的材料,可以减小芯片在工作过程中受到的热应力。
- 改善散热系统:合理设计散热系统,增加芯片的散热效率,降低芯片的工作温度,减小热应力。
- 优化工艺参数:通过调整制造过程中的工艺参数,降低芯片的热应力。
总之,芯片热应力对于元器件的可靠性具有重要的影响。研究人员需要加强对芯片热应力的研究,深入了解芯片热应力的来源和测试方法,探索降低芯片热应力的方法,以提高芯片的性能和稳定性。
五、热应力变形规律?
温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。又称变温应力。
求解热应力,既要确定温度场,又要确定位移、应变和应力场。与时间无关的温度场称定常温度场,它引起定常热应力;随时间变化的温度场叫非定常温度场,它引起非定常热应力。热应力的求解步骤:①由热传导方程和边界条件(求非定常温度场还须初始条件)求出温度分布;②再由热弹性力学方程求出位移和应力。
主要特点
1. 热应力随约束程度的增大而增大。由于材料的线膨胀系数、弹性模量与泊桑比随温度变化而变化,热应力不仅与温度变化量有关,而且受初始温度的影响。
2. 热应力与零外载相平衡,是由热变形受约束引起的自平衡应力,在温度高处发生压缩,温度低处发生拉伸形变。
3. 热应力具有自限性,屈服流动或高温蠕变可使热应力降低。对于塑性材料,热应力不会导致构件断裂,但交变热应力有可能导致构件发生疲劳失效或塑性变形累积。
六、什么叫热应力?
所谓热应力是指半成品干燥和烧成热加工中由于温差作用而产生的一种应力.热应力源包括升降温过程中砖坯内外及砖坯与环境温差。
温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。又称变温应力。
七、热应力裂纹原理?
热裂是铸件生产中最常见的铸造缺陷之一。裂纹表面呈氧化色(铸钢件裂纹表面近似黑色,铝合金呈暗灰色),不光滑,可以看到树枝晶。
裂纹是沿晶界产生和发展的,外形曲折。热裂形成原理:形成热裂纹的理论原因和实际原因很多,但根本原因是铸件的凝固方式和凝固时期铸件的热应力和收缩应力。
液体金属浇入到铸型后,热量散失主要是通过型壁,所以,凝固总是从铸件表面开始。
当凝固后期出现大量的枝晶并搭接成完整的骨架时,固态收缩开始产生。
但此时枝晶之间还存在一层尚未凝固舶液体金属薄膜(液膜),如果铸件收缩不受任何阻碍,那么枝晶骨架可以自由收缩,不受力的作用。
当枝晶骨架的收缩受到砂型或砂芯等的阻碍时,不能自由收缩就会产生拉应力。
当拉应力超过其材料强度极限时,枝晶之间就会产生开裂。
如果枝晶骨架被拉开的速度很慢,而且被拉开部分周围有足够的金属液及时流入拉裂处并补充,那么铸件不会产生热裂纹。
相反,如果开裂处得不到金属液的补充,铸件就会出现热裂纹。
由此可知,宽凝固温度范围,糊状或海绵网络状凝固方式的合金最容易产生热裂。
随着凝固温度范围的变窄,合金的热裂倾向变小,恒温凝固的共晶成分的合金最不容易形成热裂。
热裂形成于铸件凝固时期,但并不意味着铸件凝固时必然产生热裂。主要取决于铸件凝固时期的热应力和收缩应力。
铸件凝固区域固相晶粒骨架中的热应力,易使铸件产生热裂或皮下热裂;外部阻碍因素造成的收缩应力,则是铸件产生热裂的主要条件。
处于凝固状态的铸件外壳,其线收缩受到砂芯、型砂、铸件表面同砂型表面摩擦力等外部因素阻碍,外壳中就会有收缩应力(拉应力),铸件热节,特别是热节处尖角所形成的外壳较薄,就成为收缩应力集中的地方,铸件最容易在这些地方产生热裂。热裂纹产生的原因体现在工艺和铸件结构方面其中有:铸件壁厚不均匀,内角太小;搭接部位分叉太多,铸件外框、肋板等阻碍铸件正常收缩;浇冒口系统阻碍铸件正常收缩,如浇冒口靠近箱带或浇冒口之间型砂强度很高,限制了铸件的自由收缩;冒口太小或太大;合金线收缩率太大;合金中低熔点相形成元素超标,铸钢铸铁中硫、磷含量高;铸件开箱落砂过早,冷却过快。
八、什么是热应力?怎么降低对船舶机械设备的危害?
热应力:零件各部分受热温度不同,产生的变形不同。材料内部一部分金属对另一部分金属变形的约束或牵制产生热应力。零件内外表面的温度不同也会产生热应力。
根据热应力与时间的关系分为定常热应力和不定常热应力。定常热应力是指不随时间变化的热应力。不定常热应力是指随时间变化的热应力。
根据热应力的频率分为高频热应力与低频热应力。
降低危害的方法:
(1)尽可能地减少甚至消除零件上的应力集中和应变集中。
(2)提高材料的高温强度。
(3)提高材料的塑形。
(4)降低材料的热膨胀系数。
九、pcb热应力测试标准?
PCB作为元器件的载体,其可靠性对电子产品的整机性能有重要影响。焊料的无铅化将SMT的温度提高了40℃,电子产品组装的复杂化使得PCB在焊接过程中需要经过两次甚至多次热冲击,电子产品功能的集成化在使用过程中产生大量的热量都对PCB的性能提出了更高的要求。为确保PCB安装和使用过程中的可靠性,需要对PCB的耐热性能进行评估,通过热应力试验能够反映孔金属化孔以及基材的品质以及两者之间的相互协调性。
热应力:物体内部温度变化时,只要物体不能自由伸缩,或其内部彼此约束;则在物体内部产生应力,这种应力称之为热应力。组成PCB的基体材料与铜箔、化学铜层、电镀铜层之间相互连接在一起,在温度变化(焊接和使用)中必然产生内部热应力。
十、fpc热应力测试条件?
FPC软性线路板需要做的测试
1.热应力测试:目的是验证FPC板材之耐热性。
2.半田付着性测试:目的是验证FPC板材吃锡是否良好。
3.环境测试(冷热冲击):目的是验证FPC板材受否能在温度急剧变化的恶劣环境中储存后保持良好的性能。
4.电镀密着测试:目的是验证FPC板材镀层密着性是否良好。
5.环境测试(高温高湿):是验证FPC板材在高温高湿环境下能否保持良好的性能。
6.绕折测试:目的是验证FPC板材绕折弯曲角度能否保持良好性能。
- 相关评论
- 我要评论
-