返回首页

13海上1船舶自动识别系统的英文缩写是?(大写)

81 2024-03-12 20:27 admin

一、13海上1船舶自动识别系统的英文缩写是?(大写)

AIS-Automatic identification System

船舶自动识别系统AIS(Automatic identification System)是一种船舶导航设备,通过AIS使用能增强船舶间避免碰撞的措施,能加强ARPA雷达、船舶交通管理系统、船舶报告的功能,能在电子海图上显示所有船舶可视化的航向、航线、航名等信息,达到改进海事通信的功能和提供一种船舶进行语音和文本通信的方法,增强了船舶的全局意识。 AIS采用船舶全球唯一编码体制,即MMSI码来作为识别手段。每一船舶从开始建造到船舶使用解体,给予一个全球唯一的MMSI码。 ASI技术标准规定:每分钟划分为2250个时间段。每个时间段可发布一条布长于256比特的信息,长于256比特的信息需要增加时间段。每条船舶会通过询问选择一个与他船埠发生冲突的时间段和对应的时间段来发布本船的信息。

二、标量场可视化有哪些方法

一、面积尺寸可视化

对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。这种方法会让浏览者对数据及其之间的对比一目了然。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。

二、颜色可视化

通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。

三、图形可视化

在我们设计指标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表更加生动的被展现,更便于用户理解图表要表达的主题。

四、地域空间可视化

当指标数据要表达的主题跟地域有关联时,我们一般会选择用地图为大背景。这样用户可以直观的了解整体的数据情况,同时也可以根据地理位置快速的定位到某一地区来查看详细数据。

五、概念可视化

通过将抽象的指标数据转换成我们熟悉的容易感知的数据时,用户便更容易理解图形要表达的意义。

注意事项

在总结了常见维度的数据可视化方法和范例之后,要再次总体强调下做数据可视化设计时的注意事项,总结了三点如下:

1)设计的方案至少适用于两个层次:一是能够整体展示大的图形轮廓,让用户能够快速的了解图表所要表达的整体概念;之后再以合适的方式对局部的详细数据加以呈现(如鼠标hover展示)。

2)做数据可视化时,上述的五个方法经常是混合用的,尤其是做一些复杂图形和多维度数据的展示时。

3)做出的可视化图表一定要易于理解,在显性化的基础上越美观越好,切忌华而不实。

三、自动化技术在船舶工程中的应用

1. 机舱自动化发展历史及现状

舰艇装备武器、观导、通信系统的自动化、电子程控化是衡量舰艇现代化程度的主要尺度,而机舱自动化是当代舰船共同研发的课题。然而,由于舰船使用任务的差异,受其战术技术要求或和技术经济指标的制约,在船舶自动化设计上也会有不同的定位和取向。

舰艇机舱自动化设置的目的在于避免和防止船员判断和操作失当,贻误战机,其次为减轻船员大量重复体力消耗,进而提高其战斗力和生命力。民用船舶机舱自动化除安全可靠因素外,尤以追求船舶运行的经济性为目的。

从本世纪50年代机电设备单元(或单机)自动化在舰船上大量采用,1961年日本建成“金华山丸”号,实现机舱集中控制和驾驶室遥控主机,成为世界上第一艘自动化船。60年代中期发展无人值班机舱,出现了第二代自动化船,如1964年日本为丹麦建造的“赛灵月”号(SELEM DAM)65型油船。该船除了机舱集中控制和驾驶室遥控主机外,还有火灾探测及自动灭火装置。在机舱、驾驶室和船员居住区之间设有通信和报警装置。其后,各国船级社陆续出台了满足不同程度自动化分级的一人或无人值班机舱船舶的技术标准,从而使舰船机舱自动化纳入规范化。

2. 电站自动化系统的历史与发展

船舶电站是船舶的重要组成部分,而电站自动化是船舶自动化的主要内容之一。电站运行的可靠性、经济性及自动化程度对保证船舶安全、经济航行具有重要意义。随着船舶向大型化和多功能化发展,对船舶电站提出的要求也越来越高,因而船舶电站在近几十年中有了很大的发展,其发展的突出标志是自动化。

国外船舶自动化一开始大多是从电气部分着手,从最原始的手动本地操纵进化成手动遥控操纵,再进一步发展成半自动控制,最后发展到目前的最高水平的电站全自动控制的无人值班机舱。早在60年代初期,日本、德国、英国等国就有电站单元自动化装置,如:英国的MMF自并车装置,日本的XET自动并车装置和XPT自动负荷分配装置。到70年代中后期,人们在单元自动化装置的基础上,把它们系统地组合成成套电站自动化设备,系统可在集控室进行集中控制,如:“里言斯顿”号船上的SEPA电站自动化控制系统,日本“星光”号船上电站自动化系统。随着微型计算机的发展和推广应用,在80年代初期国外研制成功了微型计算机单机控制系统,如:用在我国“德大”轮上的日本大发公司配套的电站自动化控制系统,广州远洋公司15000吨上使用的丹麦SEMCO公司的APM电动自动化系统。到80年代中后期,随着微机网络技术的日趋成熟,国外众多国家相继开发研制多微机分布式网络型自动化控制系统,如:西门子、AEG等国际著名的大公司近期的产品,是目前国际上最新技术产品。

我国在船舶电站自动化方面起步较晚,而且计算机技术发展和应用落后于国际水平。因此,在电站自动化技术方面存在很大差距。前儿年,国内研制生产并投入使用的电站自动化产品,在技术上大都相当于国外六七十年代的产品,是分立元件单元化控制装置,在测量、控制精度及性能稳定性和可靠性方面均不太理想。近几年,也有不少单微机电站自动化系统,但由于其存在着一旦微机出现故障则整个电站自动化功能将全部失效等这一系统性先天不足问题,因此这一产品的推广应用也受到限制。随着船舶向大型化、自动化方向发展,对船舶电站提出了更高的要求,因此,一个高可靠性、功能齐全的网络型多微机分布式电站自动化控制系统将是未来船舶电站自动化的发展趋势。

3. 主机遥控系统的历史与发展概况

舰船机舱主机遥控系统是舰船机舱自动化的重要组成部分。在本世纪60年代以前的几十年里,船舶机舱里只有个别的或局部的机组、系统采用自动化技术,从局部自动到全面自动化经历了一段较长的岁月。随着自动化装置的设计、制造和管理各方面的日趋成熟,单项和局部的自动化逐渐增多。1961年1月,日本建成世界上第一艘具有机舱集中监视报警和主机遥控装置的8000吨级“金华山丸”货船,只需一人值班,船员人数减少至37人。引起了世界各国的极大关注,此后,机舱集中监视报警和主机遥控系统得以了迅速发展。70年代中期起,随着微型计算机的发展,微机随即被用到船上。80年代微机迅猛发展,集成度不断提高,中央处理单元由4位、8位发展到16、32位以上。使微机在机舱集中监视报警和主机遥控系统中的应用得以迅速发展。

我国在70年代后期,紧跟世界轮机自动化发展步伐。1978年,万吨级货船“长顺”轮使用了自行设计制造的主机遥控系统。1990年诞生了我国第一套完整的网络型微机控制主机遥控系统(CY880型)。该系统成功地安装于我海军某综合补给船上。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片